Metamath Proof Explorer


Theorem abvne0

Description: The absolute value of a nonzero number is nonzero. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a 𝐴 = ( AbsVal ‘ 𝑅 )
abvf.b 𝐵 = ( Base ‘ 𝑅 )
abveq0.z 0 = ( 0g𝑅 )
Assertion abvne0 ( ( 𝐹𝐴𝑋𝐵𝑋0 ) → ( 𝐹𝑋 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 abvf.a 𝐴 = ( AbsVal ‘ 𝑅 )
2 abvf.b 𝐵 = ( Base ‘ 𝑅 )
3 abveq0.z 0 = ( 0g𝑅 )
4 1 2 3 abveq0 ( ( 𝐹𝐴𝑋𝐵 ) → ( ( 𝐹𝑋 ) = 0 ↔ 𝑋 = 0 ) )
5 4 necon3bid ( ( 𝐹𝐴𝑋𝐵 ) → ( ( 𝐹𝑋 ) ≠ 0 ↔ 𝑋0 ) )
6 5 biimp3ar ( ( 𝐹𝐴𝑋𝐵𝑋0 ) → ( 𝐹𝑋 ) ≠ 0 )