Step |
Hyp |
Ref |
Expression |
1 |
|
abv0.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
2 |
|
abvneg.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
abvneg.p |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
4 |
1
|
abvrcl |
⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Ring ) |
5 |
4
|
adantr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
6 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
7 |
4 6
|
syl |
⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Grp ) |
8 |
2 3
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
9 |
7 8
|
sylan |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
10 |
|
simpr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
11 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
13 |
2 11 12
|
ring1eq0 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) → ( 𝑁 ‘ 𝑋 ) = 𝑋 ) ) |
14 |
5 9 10 13
|
syl3anc |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) → ( 𝑁 ‘ 𝑋 ) = 𝑋 ) ) |
15 |
14
|
imp |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑁 ‘ 𝑋 ) = 𝑋 ) |
16 |
15
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
17 |
2 11
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
18 |
4 17
|
syl |
⊢ ( 𝐹 ∈ 𝐴 → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
19 |
2 3
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) |
20 |
7 18 19
|
syl2anc |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) |
21 |
1 2
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ∈ ℝ ) |
22 |
20 21
|
mpdan |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ∈ ℝ ) |
23 |
22
|
recnd |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ∈ ℂ ) |
24 |
23
|
sqvald |
⊢ ( 𝐹 ∈ 𝐴 → ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) · ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
25 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
26 |
1 2 25
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) · ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
27 |
20 20 26
|
mpd3an23 |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) · ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
28 |
2 25 3 4 20 18
|
ringmneg2 |
⊢ ( 𝐹 ∈ 𝐴 → ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
29 |
2 25 11 3 4 18
|
ringnegl |
⊢ ( 𝐹 ∈ 𝐴 → ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) |
30 |
29
|
fveq2d |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝑁 ‘ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑁 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) |
31 |
2 3
|
grpinvinv |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
32 |
7 18 31
|
syl2anc |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝑁 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
33 |
28 30 32
|
3eqtrd |
⊢ ( 𝐹 ∈ 𝐴 → ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
34 |
33
|
fveq2d |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
35 |
24 27 34
|
3eqtr2d |
⊢ ( 𝐹 ∈ 𝐴 → ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
37 |
1 11 12
|
abv1z |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
38 |
36 37
|
eqtrd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = 1 ) |
39 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
40 |
38 39
|
eqtr4di |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
41 |
1 2
|
abvge0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) → 0 ≤ ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) |
42 |
20 41
|
mpdan |
⊢ ( 𝐹 ∈ 𝐴 → 0 ≤ ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) |
43 |
|
1re |
⊢ 1 ∈ ℝ |
44 |
|
0le1 |
⊢ 0 ≤ 1 |
45 |
|
sq11 |
⊢ ( ( ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) ∧ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ) → ( ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = 1 ) ) |
46 |
43 44 45
|
mpanr12 |
⊢ ( ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) → ( ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = 1 ) ) |
47 |
22 42 46
|
syl2anc |
⊢ ( 𝐹 ∈ 𝐴 → ( ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = 1 ) ) |
48 |
47
|
biimpa |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) → ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = 1 ) |
49 |
40 48
|
syldan |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = 1 ) |
50 |
49
|
adantlr |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = 1 ) |
51 |
50
|
oveq1d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) · ( 𝐹 ‘ 𝑋 ) ) = ( 1 · ( 𝐹 ‘ 𝑋 ) ) ) |
52 |
|
simpl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → 𝐹 ∈ 𝐴 ) |
53 |
20
|
adantr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) |
54 |
1 2 25
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) · ( 𝐹 ‘ 𝑋 ) ) ) |
55 |
52 53 10 54
|
syl3anc |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) · ( 𝐹 ‘ 𝑋 ) ) ) |
56 |
2 25 11 3 5 10
|
ringnegl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
57 |
56
|
fveq2d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) ) = ( 𝐹 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
58 |
55 57
|
eqtr3d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) · ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) · ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
60 |
51 59
|
eqtr3d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 1 · ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
61 |
1 2
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
62 |
61
|
recnd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
63 |
62
|
mulid2d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 1 · ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
64 |
63
|
adantr |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 1 · ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
65 |
60 64
|
eqtr3d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
66 |
16 65
|
pm2.61dane |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |