Step |
Hyp |
Ref |
Expression |
1 |
|
abvpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
abvpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
abvpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
4 |
|
abvpropd.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
5 |
1 2 3 4
|
ringpropd |
⊢ ( 𝜑 → ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) ) |
6 |
1 2
|
eqtr3d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
7 |
6
|
feq2d |
⊢ ( 𝜑 → ( 𝑓 : ( Base ‘ 𝐾 ) ⟶ ( 0 [,) +∞ ) ↔ 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( 0 [,) +∞ ) ) ) |
8 |
1 2 3
|
grpidpropd |
⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
10 |
9
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 = ( 0g ‘ 𝐾 ) ↔ 𝑥 = ( 0g ‘ 𝐿 ) ) ) |
11 |
10
|
bibi2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐾 ) ) ↔ ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐿 ) ) ) ) |
12 |
4
|
fveqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ) ) |
13 |
3
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) |
14 |
13
|
breq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) |
15 |
12 14
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
16 |
15
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
17 |
16
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
18 |
11 17
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
19 |
18
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
20 |
1
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
21 |
20
|
anbi2d |
⊢ ( 𝜑 → ( ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
22 |
1 21
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
23 |
2
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
24 |
23
|
anbi2d |
⊢ ( 𝜑 → ( ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
25 |
2 24
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
26 |
19 22 25
|
3bitr3d |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
27 |
7 26
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑓 : ( Base ‘ 𝐾 ) ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) |
28 |
5 27
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐾 ∈ Ring ∧ ( 𝑓 : ( Base ‘ 𝐾 ) ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ↔ ( 𝐿 ∈ Ring ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) ) |
29 |
|
eqid |
⊢ ( AbsVal ‘ 𝐾 ) = ( AbsVal ‘ 𝐾 ) |
30 |
29
|
abvrcl |
⊢ ( 𝑓 ∈ ( AbsVal ‘ 𝐾 ) → 𝐾 ∈ Ring ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
32 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
33 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
34 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
35 |
29 31 32 33 34
|
isabv |
⊢ ( 𝐾 ∈ Ring → ( 𝑓 ∈ ( AbsVal ‘ 𝐾 ) ↔ ( 𝑓 : ( Base ‘ 𝐾 ) ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) |
36 |
30 35
|
biadanii |
⊢ ( 𝑓 ∈ ( AbsVal ‘ 𝐾 ) ↔ ( 𝐾 ∈ Ring ∧ ( 𝑓 : ( Base ‘ 𝐾 ) ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) |
37 |
|
eqid |
⊢ ( AbsVal ‘ 𝐿 ) = ( AbsVal ‘ 𝐿 ) |
38 |
37
|
abvrcl |
⊢ ( 𝑓 ∈ ( AbsVal ‘ 𝐿 ) → 𝐿 ∈ Ring ) |
39 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
40 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
41 |
|
eqid |
⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) |
42 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
43 |
37 39 40 41 42
|
isabv |
⊢ ( 𝐿 ∈ Ring → ( 𝑓 ∈ ( AbsVal ‘ 𝐿 ) ↔ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) |
44 |
38 43
|
biadanii |
⊢ ( 𝑓 ∈ ( AbsVal ‘ 𝐿 ) ↔ ( 𝐿 ∈ Ring ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) |
45 |
28 36 44
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑓 ∈ ( AbsVal ‘ 𝐾 ) ↔ 𝑓 ∈ ( AbsVal ‘ 𝐿 ) ) ) |
46 |
45
|
eqrdv |
⊢ ( 𝜑 → ( AbsVal ‘ 𝐾 ) = ( AbsVal ‘ 𝐿 ) ) |