Description: Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | abvf.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
Assertion | abvrcl | ⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Ring ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvf.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
2 | df-abv | ⊢ AbsVal = ( 𝑟 ∈ Ring ↦ { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ) | |
3 | 2 | mptrcl | ⊢ ( 𝐹 ∈ ( AbsVal ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
4 | 3 1 | eleq2s | ⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Ring ) |