Step |
Hyp |
Ref |
Expression |
1 |
|
abv0.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
2 |
|
abvneg.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
abvrec.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
abvrec.p |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
5 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → 𝐹 ∈ 𝐴 ) |
6 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → 𝑋 ∈ 𝐵 ) |
7 |
1 2
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
8 |
5 6 7
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
9 |
8
|
recnd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
10 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → 𝑅 ∈ DivRing ) |
11 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → 𝑋 ≠ 0 ) |
12 |
2 3 4
|
drnginvrcl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
13 |
10 6 11 12
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
14 |
1 2
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ∈ ℝ ) |
15 |
5 13 14
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ∈ ℝ ) |
16 |
15
|
recnd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ∈ ℂ ) |
17 |
1 2 3
|
abvne0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐹 ‘ 𝑋 ) ≠ 0 ) |
18 |
5 6 11 17
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ≠ 0 ) |
19 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
20 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
21 |
2 3 19 20 4
|
drnginvrr |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝑅 ) ) |
22 |
10 6 11 21
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝑅 ) ) |
23 |
22
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
24 |
1 2 19
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ) ) |
25 |
5 6 13 24
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ) ) |
26 |
1 20
|
abv1 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
28 |
23 25 27
|
3eqtr3d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ) = 1 ) |
29 |
9 16 18 28
|
mvllmuld |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) = ( 1 / ( 𝐹 ‘ 𝑋 ) ) ) |