| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abv0.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
| 2 |
|
abvneg.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
abvrec.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
abvrec.p |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
| 5 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → 𝐹 ∈ 𝐴 ) |
| 6 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → 𝑋 ∈ 𝐵 ) |
| 7 |
1 2
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
| 8 |
5 6 7
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
| 9 |
8
|
recnd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
| 10 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → 𝑅 ∈ DivRing ) |
| 11 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → 𝑋 ≠ 0 ) |
| 12 |
2 3 4
|
drnginvrcl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 13 |
10 6 11 12
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 14 |
1 2
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ∈ ℝ ) |
| 15 |
5 13 14
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ∈ ℝ ) |
| 16 |
15
|
recnd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ∈ ℂ ) |
| 17 |
1 2 3
|
abvne0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐹 ‘ 𝑋 ) ≠ 0 ) |
| 18 |
5 6 11 17
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ≠ 0 ) |
| 19 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 20 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 21 |
2 3 19 20 4
|
drnginvrr |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝑅 ) ) |
| 22 |
10 6 11 21
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝑅 ) ) |
| 23 |
22
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 24 |
1 2 19
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 25 |
5 6 13 24
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 26 |
1 20
|
abv1 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
| 28 |
23 25 27
|
3eqtr3d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ) = 1 ) |
| 29 |
9 16 18 28
|
mvllmuld |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) = ( 1 / ( 𝐹 ‘ 𝑋 ) ) ) |