Step |
Hyp |
Ref |
Expression |
1 |
|
abvres.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
2 |
|
abvres.s |
⊢ 𝑆 = ( 𝑅 ↾s 𝐶 ) |
3 |
|
abvres.b |
⊢ 𝐵 = ( AbsVal ‘ 𝑆 ) |
4 |
3
|
a1i |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 = ( AbsVal ‘ 𝑆 ) ) |
5 |
2
|
subrgbas |
⊢ ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) → 𝐶 = ( Base ‘ 𝑆 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐶 = ( Base ‘ 𝑆 ) ) |
7 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
8 |
2 7
|
ressplusg |
⊢ ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑆 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑆 ) ) |
10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
11 |
2 10
|
ressmulr |
⊢ ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
13 |
|
subrgsubg |
⊢ ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) → 𝐶 ∈ ( SubGrp ‘ 𝑅 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐶 ∈ ( SubGrp ‘ 𝑅 ) ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
16 |
2 15
|
subg0 |
⊢ ( 𝐶 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) ) |
17 |
14 16
|
syl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) ) |
18 |
2
|
subrgring |
⊢ ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
19 |
18
|
adantl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ Ring ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
21 |
1 20
|
abvf |
⊢ ( 𝐹 ∈ 𝐴 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ ) |
22 |
20
|
subrgss |
⊢ ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) → 𝐶 ⊆ ( Base ‘ 𝑅 ) ) |
23 |
|
fssres |
⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ ∧ 𝐶 ⊆ ( Base ‘ 𝑅 ) ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ ℝ ) |
24 |
21 22 23
|
syl2an |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ ℝ ) |
25 |
15
|
subg0cl |
⊢ ( 𝐶 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝐶 ) |
26 |
|
fvres |
⊢ ( ( 0g ‘ 𝑅 ) ∈ 𝐶 → ( ( 𝐹 ↾ 𝐶 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
27 |
14 25 26
|
3syl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
28 |
1 15
|
abv0 |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
29 |
28
|
adantr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
30 |
27 29
|
eqtrd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
31 |
|
simp1l |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝐹 ∈ 𝐴 ) |
32 |
22
|
adantl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐶 ⊆ ( Base ‘ 𝑅 ) ) |
33 |
32
|
sselda |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
34 |
33
|
3adant3 |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
35 |
|
simp3 |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝑥 ≠ ( 0g ‘ 𝑅 ) ) |
36 |
1 20 15
|
abvgt0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 0 < ( 𝐹 ‘ 𝑥 ) ) |
37 |
31 34 35 36
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 0 < ( 𝐹 ‘ 𝑥 ) ) |
38 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
39 |
38
|
3ad2ant2 |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
40 |
37 39
|
breqtrrd |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 0 < ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) |
41 |
|
simp1l |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝐹 ∈ 𝐴 ) |
42 |
|
simp1r |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) |
43 |
42 22
|
syl |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝐶 ⊆ ( Base ‘ 𝑅 ) ) |
44 |
|
simp2l |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑥 ∈ 𝐶 ) |
45 |
43 44
|
sseldd |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
46 |
|
simp3l |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑦 ∈ 𝐶 ) |
47 |
43 46
|
sseldd |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
48 |
1 20 10
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
49 |
41 45 47 48
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
50 |
10
|
subrgmcl |
⊢ ( ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐶 ) |
51 |
42 44 46 50
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐶 ) |
52 |
51
|
fvresd |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
53 |
44
|
fvresd |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
54 |
46
|
fvresd |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
55 |
53 54
|
oveq12d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) · ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
56 |
49 52 55
|
3eqtr4d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) · ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ) ) |
57 |
1 20 7
|
abvtri |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
58 |
41 45 47 57
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
59 |
7
|
subrgacl |
⊢ ( ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐶 ) |
60 |
42 44 46 59
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐶 ) |
61 |
60
|
fvresd |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
62 |
53 54
|
oveq12d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) + ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
63 |
58 61 62
|
3brtr4d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) + ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ) ) |
64 |
4 6 9 12 17 19 24 30 40 56 63
|
isabvd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝐹 ↾ 𝐶 ) ∈ 𝐵 ) |