Step |
Hyp |
Ref |
Expression |
1 |
|
abv0.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
2 |
|
abvneg.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
abvsubtri.p |
⊢ − = ( -g ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
6 |
2 4 5 3
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
7 |
6
|
3adant1 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 − 𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
9 |
1
|
abvrcl |
⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Ring ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
11 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
13 |
|
simp3 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
14 |
2 5
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) |
15 |
12 13 14
|
syl2anc |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) |
16 |
1 2 4
|
abvtri |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) ≤ ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
17 |
15 16
|
syld3an3 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) ≤ ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
18 |
1 2 5
|
abvneg |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) = ( 𝐹 ‘ 𝑌 ) ) |
19 |
18
|
3adant2 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) = ( 𝐹 ‘ 𝑌 ) ) |
20 |
19
|
oveq2d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) |
21 |
17 20
|
breqtrd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) ≤ ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) |
22 |
8 21
|
eqbrtrd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 − 𝑌 ) ) ≤ ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) |