Step |
Hyp |
Ref |
Expression |
1 |
|
abvtriv.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
2 |
|
abvtriv.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
abvtriv.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
abvtriv.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 0 , 0 , 1 ) ) |
5 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
6 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
7 |
|
biid |
⊢ ( 𝑅 ∈ DivRing ↔ 𝑅 ∈ DivRing ) |
8 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) |
9 |
|
eldifsn |
⊢ ( 𝑧 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) |
10 |
2 5 3
|
drngmcl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑧 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
11 |
7 8 9 10
|
syl3anbr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
12 |
|
eldifsn |
⊢ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ≠ 0 ) ) |
13 |
11 12
|
sylib |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ≠ 0 ) ) |
14 |
13
|
simprd |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ≠ 0 ) |
15 |
1 2 3 4 5 6 14
|
abvtrivd |
⊢ ( 𝑅 ∈ DivRing → 𝐹 ∈ 𝐴 ) |