Description: The trivial absolute value. (Contributed by Mario Carneiro, 8-Sep-2014) (Revised by Mario Carneiro, 6-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abvtriv.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
abvtriv.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
abvtriv.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
abvtriv.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 0 , 0 , 1 ) ) | ||
Assertion | abvtriv | ⊢ ( 𝑅 ∈ DivRing → 𝐹 ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvtriv.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
2 | abvtriv.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
3 | abvtriv.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
4 | abvtriv.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 0 , 0 , 1 ) ) | |
5 | drngdomn | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn ) | |
6 | 1 2 3 4 | abvtrivg | ⊢ ( 𝑅 ∈ Domn → 𝐹 ∈ 𝐴 ) |
7 | 5 6 | syl | ⊢ ( 𝑅 ∈ DivRing → 𝐹 ∈ 𝐴 ) |