Description: The trivial absolute value. (Contributed by Mario Carneiro, 8-Sep-2014) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvtriv.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| abvtriv.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| abvtriv.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| abvtriv.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 0 , 0 , 1 ) ) | ||
| Assertion | abvtriv | ⊢ ( 𝑅 ∈ DivRing → 𝐹 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvtriv.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 2 | abvtriv.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | abvtriv.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | abvtriv.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 0 , 0 , 1 ) ) | |
| 5 | drngdomn | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn ) | |
| 6 | 1 2 3 4 | abvtrivg | ⊢ ( 𝑅 ∈ Domn → 𝐹 ∈ 𝐴 ) |
| 7 | 5 6 | syl | ⊢ ( 𝑅 ∈ DivRing → 𝐹 ∈ 𝐴 ) |