Metamath Proof Explorer


Theorem abvtriv

Description: The trivial absolute value. (Contributed by Mario Carneiro, 8-Sep-2014) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses abvtriv.a 𝐴 = ( AbsVal ‘ 𝑅 )
abvtriv.b 𝐵 = ( Base ‘ 𝑅 )
abvtriv.z 0 = ( 0g𝑅 )
abvtriv.f 𝐹 = ( 𝑥𝐵 ↦ if ( 𝑥 = 0 , 0 , 1 ) )
Assertion abvtriv ( 𝑅 ∈ DivRing → 𝐹𝐴 )

Proof

Step Hyp Ref Expression
1 abvtriv.a 𝐴 = ( AbsVal ‘ 𝑅 )
2 abvtriv.b 𝐵 = ( Base ‘ 𝑅 )
3 abvtriv.z 0 = ( 0g𝑅 )
4 abvtriv.f 𝐹 = ( 𝑥𝐵 ↦ if ( 𝑥 = 0 , 0 , 1 ) )
5 drngdomn ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn )
6 1 2 3 4 abvtrivg ( 𝑅 ∈ Domn → 𝐹𝐴 )
7 5 6 syl ( 𝑅 ∈ DivRing → 𝐹𝐴 )