Step |
Hyp |
Ref |
Expression |
1 |
|
abvtriv.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
2 |
|
abvtriv.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
abvtriv.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
abvtriv.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 0 , 0 , 1 ) ) |
5 |
|
abvtrivd.1 |
⊢ · = ( .r ‘ 𝑅 ) |
6 |
|
abvtrivd.2 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
abvtrivd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑦 · 𝑧 ) ≠ 0 ) |
8 |
1
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( AbsVal ‘ 𝑅 ) ) |
9 |
2
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
10 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) ) |
11 |
5
|
a1i |
⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) |
12 |
3
|
a1i |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑅 ) ) |
13 |
|
0re |
⊢ 0 ∈ ℝ |
14 |
|
1re |
⊢ 1 ∈ ℝ |
15 |
13 14
|
ifcli |
⊢ if ( 𝑥 = 0 , 0 , 1 ) ∈ ℝ |
16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 = 0 , 0 , 1 ) ∈ ℝ ) |
17 |
16 4
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ℝ ) |
18 |
2 3
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
19 |
|
iftrue |
⊢ ( 𝑥 = 0 → if ( 𝑥 = 0 , 0 , 1 ) = 0 ) |
20 |
|
c0ex |
⊢ 0 ∈ V |
21 |
19 4 20
|
fvmpt |
⊢ ( 0 ∈ 𝐵 → ( 𝐹 ‘ 0 ) = 0 ) |
22 |
6 18 21
|
3syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 0 ) |
23 |
|
0lt1 |
⊢ 0 < 1 |
24 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 0 ↔ 𝑦 = 0 ) ) |
25 |
24
|
ifbid |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 = 0 , 0 , 1 ) = if ( 𝑦 = 0 , 0 , 1 ) ) |
26 |
|
1ex |
⊢ 1 ∈ V |
27 |
20 26
|
ifex |
⊢ if ( 𝑦 = 0 , 0 , 1 ) ∈ V |
28 |
25 4 27
|
fvmpt |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝐹 ‘ 𝑦 ) = if ( 𝑦 = 0 , 0 , 1 ) ) |
29 |
|
ifnefalse |
⊢ ( 𝑦 ≠ 0 → if ( 𝑦 = 0 , 0 , 1 ) = 1 ) |
30 |
28 29
|
sylan9eq |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) → ( 𝐹 ‘ 𝑦 ) = 1 ) |
31 |
30
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) → ( 𝐹 ‘ 𝑦 ) = 1 ) |
32 |
23 31
|
breqtrrid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) → 0 < ( 𝐹 ‘ 𝑦 ) ) |
33 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
34 |
33
|
eqcomi |
⊢ 1 = ( 1 · 1 ) |
35 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → 𝑅 ∈ Ring ) |
36 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → 𝑦 ∈ 𝐵 ) |
37 |
|
simp3l |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → 𝑧 ∈ 𝐵 ) |
38 |
2 5
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 · 𝑧 ) ∈ 𝐵 ) |
39 |
35 36 37 38
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝐵 ) |
40 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( 𝑥 = 0 ↔ ( 𝑦 · 𝑧 ) = 0 ) ) |
41 |
40
|
ifbid |
⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → if ( 𝑥 = 0 , 0 , 1 ) = if ( ( 𝑦 · 𝑧 ) = 0 , 0 , 1 ) ) |
42 |
20 26
|
ifex |
⊢ if ( ( 𝑦 · 𝑧 ) = 0 , 0 , 1 ) ∈ V |
43 |
41 4 42
|
fvmpt |
⊢ ( ( 𝑦 · 𝑧 ) ∈ 𝐵 → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = if ( ( 𝑦 · 𝑧 ) = 0 , 0 , 1 ) ) |
44 |
39 43
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = if ( ( 𝑦 · 𝑧 ) = 0 , 0 , 1 ) ) |
45 |
7
|
neneqd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ¬ ( 𝑦 · 𝑧 ) = 0 ) |
46 |
45
|
iffalsed |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → if ( ( 𝑦 · 𝑧 ) = 0 , 0 , 1 ) = 1 ) |
47 |
44 46
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = 1 ) |
48 |
36 28
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ 𝑦 ) = if ( 𝑦 = 0 , 0 , 1 ) ) |
49 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → 𝑦 ≠ 0 ) |
50 |
49
|
neneqd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ¬ 𝑦 = 0 ) |
51 |
50
|
iffalsed |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → if ( 𝑦 = 0 , 0 , 1 ) = 1 ) |
52 |
48 51
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ 𝑦 ) = 1 ) |
53 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 0 ↔ 𝑧 = 0 ) ) |
54 |
53
|
ifbid |
⊢ ( 𝑥 = 𝑧 → if ( 𝑥 = 0 , 0 , 1 ) = if ( 𝑧 = 0 , 0 , 1 ) ) |
55 |
20 26
|
ifex |
⊢ if ( 𝑧 = 0 , 0 , 1 ) ∈ V |
56 |
54 4 55
|
fvmpt |
⊢ ( 𝑧 ∈ 𝐵 → ( 𝐹 ‘ 𝑧 ) = if ( 𝑧 = 0 , 0 , 1 ) ) |
57 |
37 56
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ 𝑧 ) = if ( 𝑧 = 0 , 0 , 1 ) ) |
58 |
|
simp3r |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → 𝑧 ≠ 0 ) |
59 |
58
|
neneqd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ¬ 𝑧 = 0 ) |
60 |
59
|
iffalsed |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → if ( 𝑧 = 0 , 0 , 1 ) = 1 ) |
61 |
57 60
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ 𝑧 ) = 1 ) |
62 |
52 61
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( ( 𝐹 ‘ 𝑦 ) · ( 𝐹 ‘ 𝑧 ) ) = ( 1 · 1 ) ) |
63 |
34 47 62
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) · ( 𝐹 ‘ 𝑧 ) ) ) |
64 |
|
breq1 |
⊢ ( 0 = if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) → ( 0 ≤ 2 ↔ if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ≤ 2 ) ) |
65 |
|
breq1 |
⊢ ( 1 = if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) → ( 1 ≤ 2 ↔ if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ≤ 2 ) ) |
66 |
|
0le2 |
⊢ 0 ≤ 2 |
67 |
|
1le2 |
⊢ 1 ≤ 2 |
68 |
64 65 66 67
|
keephyp |
⊢ if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ≤ 2 |
69 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
70 |
68 69
|
breqtri |
⊢ if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ≤ ( 1 + 1 ) |
71 |
70
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ≤ ( 1 + 1 ) ) |
72 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
73 |
6 72
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
74 |
73
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → 𝑅 ∈ Grp ) |
75 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
76 |
2 75
|
grpcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
77 |
74 36 37 76
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
78 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) → ( 𝑥 = 0 ↔ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 ) ) |
79 |
78
|
ifbid |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) → if ( 𝑥 = 0 , 0 , 1 ) = if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ) |
80 |
20 26
|
ifex |
⊢ if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ∈ V |
81 |
79 4 80
|
fvmpt |
⊢ ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ) |
82 |
77 81
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ) |
83 |
52 61
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) = ( 1 + 1 ) ) |
84 |
71 82 83
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ≤ ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) ) |
85 |
8 9 10 11 12 6 17 22 32 63 84
|
isabvd |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |