Metamath Proof Explorer


Theorem abvtrivg

Description: The trivial absolute value. This theorem is not true for rings with zero divisors, which violate the multiplication axiom; abvdom is the converse of this theorem. (Contributed by SN, 25-Jun-2025)

Ref Expression
Hypotheses abvtriv.a 𝐴 = ( AbsVal ‘ 𝑅 )
abvtriv.b 𝐵 = ( Base ‘ 𝑅 )
abvtriv.z 0 = ( 0g𝑅 )
abvtriv.f 𝐹 = ( 𝑥𝐵 ↦ if ( 𝑥 = 0 , 0 , 1 ) )
Assertion abvtrivg ( 𝑅 ∈ Domn → 𝐹𝐴 )

Proof

Step Hyp Ref Expression
1 abvtriv.a 𝐴 = ( AbsVal ‘ 𝑅 )
2 abvtriv.b 𝐵 = ( Base ‘ 𝑅 )
3 abvtriv.z 0 = ( 0g𝑅 )
4 abvtriv.f 𝐹 = ( 𝑥𝐵 ↦ if ( 𝑥 = 0 , 0 , 1 ) )
5 eqid ( .r𝑅 ) = ( .r𝑅 )
6 domnring ( 𝑅 ∈ Domn → 𝑅 ∈ Ring )
7 2 5 3 domnmuln0 ( ( 𝑅 ∈ Domn ∧ ( 𝑦𝐵𝑦0 ) ∧ ( 𝑧𝐵𝑧0 ) ) → ( 𝑦 ( .r𝑅 ) 𝑧 ) ≠ 0 )
8 1 2 3 4 5 6 7 abvtrivd ( 𝑅 ∈ Domn → 𝐹𝐴 )