Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑦 ∈ V |
2 |
1
|
brdom |
⊢ ( 𝐴 ≼ 𝑦 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝑦 ) |
3 |
|
f1f |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦 → 𝑓 : 𝐴 ⟶ 𝑦 ) |
4 |
3
|
frnd |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦 → ran 𝑓 ⊆ 𝑦 ) |
5 |
|
onss |
⊢ ( 𝑦 ∈ On → 𝑦 ⊆ On ) |
6 |
|
sstr2 |
⊢ ( ran 𝑓 ⊆ 𝑦 → ( 𝑦 ⊆ On → ran 𝑓 ⊆ On ) ) |
7 |
4 5 6
|
syl2im |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦 → ( 𝑦 ∈ On → ran 𝑓 ⊆ On ) ) |
8 |
|
epweon |
⊢ E We On |
9 |
|
wess |
⊢ ( ran 𝑓 ⊆ On → ( E We On → E We ran 𝑓 ) ) |
10 |
7 8 9
|
syl6mpi |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦 → ( 𝑦 ∈ On → E We ran 𝑓 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐴 ≼ 𝑦 ∧ 𝑓 : 𝐴 –1-1→ 𝑦 ) → ( 𝑦 ∈ On → E We ran 𝑓 ) ) |
12 |
|
f1f1orn |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦 → 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 ) |
13 |
|
eqid |
⊢ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } = { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } |
14 |
13
|
f1owe |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 → ( E We ran 𝑓 → { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } We 𝐴 ) ) |
15 |
12 14
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦 → ( E We ran 𝑓 → { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } We 𝐴 ) ) |
16 |
|
weinxp |
⊢ ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } We 𝐴 ↔ ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) |
17 |
|
reldom |
⊢ Rel ≼ |
18 |
17
|
brrelex1i |
⊢ ( 𝐴 ≼ 𝑦 → 𝐴 ∈ V ) |
19 |
|
sqxpexg |
⊢ ( 𝐴 ∈ V → ( 𝐴 × 𝐴 ) ∈ V ) |
20 |
|
incom |
⊢ ( ( 𝐴 × 𝐴 ) ∩ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ) = ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) |
21 |
|
inex1g |
⊢ ( ( 𝐴 × 𝐴 ) ∈ V → ( ( 𝐴 × 𝐴 ) ∩ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ) ∈ V ) |
22 |
20 21
|
eqeltrrid |
⊢ ( ( 𝐴 × 𝐴 ) ∈ V → ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) ∈ V ) |
23 |
|
weeq1 |
⊢ ( 𝑥 = ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) → ( 𝑥 We 𝐴 ↔ ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) ) |
24 |
23
|
spcegv |
⊢ ( ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
25 |
18 19 22 24
|
4syl |
⊢ ( 𝐴 ≼ 𝑦 → ( ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
26 |
16 25
|
syl5bi |
⊢ ( 𝐴 ≼ 𝑦 → ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } We 𝐴 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
27 |
15 26
|
sylan9r |
⊢ ( ( 𝐴 ≼ 𝑦 ∧ 𝑓 : 𝐴 –1-1→ 𝑦 ) → ( E We ran 𝑓 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
28 |
11 27
|
syld |
⊢ ( ( 𝐴 ≼ 𝑦 ∧ 𝑓 : 𝐴 –1-1→ 𝑦 ) → ( 𝑦 ∈ On → ∃ 𝑥 𝑥 We 𝐴 ) ) |
29 |
28
|
impancom |
⊢ ( ( 𝐴 ≼ 𝑦 ∧ 𝑦 ∈ On ) → ( 𝑓 : 𝐴 –1-1→ 𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
30 |
29
|
exlimdv |
⊢ ( ( 𝐴 ≼ 𝑦 ∧ 𝑦 ∈ On ) → ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
31 |
2 30
|
syl5bi |
⊢ ( ( 𝐴 ≼ 𝑦 ∧ 𝑦 ∈ On ) → ( 𝐴 ≼ 𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
32 |
31
|
ex |
⊢ ( 𝐴 ≼ 𝑦 → ( 𝑦 ∈ On → ( 𝐴 ≼ 𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) ) ) |
33 |
32
|
pm2.43b |
⊢ ( 𝑦 ∈ On → ( 𝐴 ≼ 𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
34 |
33
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ On 𝐴 ≼ 𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) |