| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 2 | 
							
								1
							 | 
							brdom | 
							⊢ ( 𝐴  ≼  𝑦  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝑦 )  | 
						
						
							| 3 | 
							
								
							 | 
							f1f | 
							⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦  →  𝑓 : 𝐴 ⟶ 𝑦 )  | 
						
						
							| 4 | 
							
								3
							 | 
							frnd | 
							⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦  →  ran  𝑓  ⊆  𝑦 )  | 
						
						
							| 5 | 
							
								
							 | 
							onss | 
							⊢ ( 𝑦  ∈  On  →  𝑦  ⊆  On )  | 
						
						
							| 6 | 
							
								
							 | 
							sstr2 | 
							⊢ ( ran  𝑓  ⊆  𝑦  →  ( 𝑦  ⊆  On  →  ran  𝑓  ⊆  On ) )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							syl2im | 
							⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦  →  ( 𝑦  ∈  On  →  ran  𝑓  ⊆  On ) )  | 
						
						
							| 8 | 
							
								
							 | 
							epweon | 
							⊢  E   We  On  | 
						
						
							| 9 | 
							
								
							 | 
							wess | 
							⊢ ( ran  𝑓  ⊆  On  →  (  E   We  On  →   E   We  ran  𝑓 ) )  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							syl6mpi | 
							⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦  →  ( 𝑦  ∈  On  →   E   We  ran  𝑓 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantl | 
							⊢ ( ( 𝐴  ≼  𝑦  ∧  𝑓 : 𝐴 –1-1→ 𝑦 )  →  ( 𝑦  ∈  On  →   E   We  ran  𝑓 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							f1f1orn | 
							⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦  →  𝑓 : 𝐴 –1-1-onto→ ran  𝑓 )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑓 ‘ 𝑤 )  E  ( 𝑓 ‘ 𝑧 ) }  =  { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑓 ‘ 𝑤 )  E  ( 𝑓 ‘ 𝑧 ) }  | 
						
						
							| 14 | 
							
								13
							 | 
							f1owe | 
							⊢ ( 𝑓 : 𝐴 –1-1-onto→ ran  𝑓  →  (  E   We  ran  𝑓  →  { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑓 ‘ 𝑤 )  E  ( 𝑓 ‘ 𝑧 ) }  We  𝐴 ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							syl | 
							⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦  →  (  E   We  ran  𝑓  →  { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑓 ‘ 𝑤 )  E  ( 𝑓 ‘ 𝑧 ) }  We  𝐴 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							weinxp | 
							⊢ ( { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑓 ‘ 𝑤 )  E  ( 𝑓 ‘ 𝑧 ) }  We  𝐴  ↔  ( { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑓 ‘ 𝑤 )  E  ( 𝑓 ‘ 𝑧 ) }  ∩  ( 𝐴  ×  𝐴 ) )  We  𝐴 )  | 
						
						
							| 17 | 
							
								
							 | 
							reldom | 
							⊢ Rel   ≼   | 
						
						
							| 18 | 
							
								17
							 | 
							brrelex1i | 
							⊢ ( 𝐴  ≼  𝑦  →  𝐴  ∈  V )  | 
						
						
							| 19 | 
							
								
							 | 
							sqxpexg | 
							⊢ ( 𝐴  ∈  V  →  ( 𝐴  ×  𝐴 )  ∈  V )  | 
						
						
							| 20 | 
							
								
							 | 
							incom | 
							⊢ ( ( 𝐴  ×  𝐴 )  ∩  { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑓 ‘ 𝑤 )  E  ( 𝑓 ‘ 𝑧 ) } )  =  ( { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑓 ‘ 𝑤 )  E  ( 𝑓 ‘ 𝑧 ) }  ∩  ( 𝐴  ×  𝐴 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							inex1g | 
							⊢ ( ( 𝐴  ×  𝐴 )  ∈  V  →  ( ( 𝐴  ×  𝐴 )  ∩  { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑓 ‘ 𝑤 )  E  ( 𝑓 ‘ 𝑧 ) } )  ∈  V )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							eqeltrrid | 
							⊢ ( ( 𝐴  ×  𝐴 )  ∈  V  →  ( { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑓 ‘ 𝑤 )  E  ( 𝑓 ‘ 𝑧 ) }  ∩  ( 𝐴  ×  𝐴 ) )  ∈  V )  | 
						
						
							| 23 | 
							
								
							 | 
							weeq1 | 
							⊢ ( 𝑥  =  ( { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑓 ‘ 𝑤 )  E  ( 𝑓 ‘ 𝑧 ) }  ∩  ( 𝐴  ×  𝐴 ) )  →  ( 𝑥  We  𝐴  ↔  ( { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑓 ‘ 𝑤 )  E  ( 𝑓 ‘ 𝑧 ) }  ∩  ( 𝐴  ×  𝐴 ) )  We  𝐴 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							spcegv | 
							⊢ ( ( { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑓 ‘ 𝑤 )  E  ( 𝑓 ‘ 𝑧 ) }  ∩  ( 𝐴  ×  𝐴 ) )  ∈  V  →  ( ( { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑓 ‘ 𝑤 )  E  ( 𝑓 ‘ 𝑧 ) }  ∩  ( 𝐴  ×  𝐴 ) )  We  𝐴  →  ∃ 𝑥 𝑥  We  𝐴 ) )  | 
						
						
							| 25 | 
							
								18 19 22 24
							 | 
							4syl | 
							⊢ ( 𝐴  ≼  𝑦  →  ( ( { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑓 ‘ 𝑤 )  E  ( 𝑓 ‘ 𝑧 ) }  ∩  ( 𝐴  ×  𝐴 ) )  We  𝐴  →  ∃ 𝑥 𝑥  We  𝐴 ) )  | 
						
						
							| 26 | 
							
								16 25
							 | 
							biimtrid | 
							⊢ ( 𝐴  ≼  𝑦  →  ( { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑓 ‘ 𝑤 )  E  ( 𝑓 ‘ 𝑧 ) }  We  𝐴  →  ∃ 𝑥 𝑥  We  𝐴 ) )  | 
						
						
							| 27 | 
							
								15 26
							 | 
							sylan9r | 
							⊢ ( ( 𝐴  ≼  𝑦  ∧  𝑓 : 𝐴 –1-1→ 𝑦 )  →  (  E   We  ran  𝑓  →  ∃ 𝑥 𝑥  We  𝐴 ) )  | 
						
						
							| 28 | 
							
								11 27
							 | 
							syld | 
							⊢ ( ( 𝐴  ≼  𝑦  ∧  𝑓 : 𝐴 –1-1→ 𝑦 )  →  ( 𝑦  ∈  On  →  ∃ 𝑥 𝑥  We  𝐴 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							impancom | 
							⊢ ( ( 𝐴  ≼  𝑦  ∧  𝑦  ∈  On )  →  ( 𝑓 : 𝐴 –1-1→ 𝑦  →  ∃ 𝑥 𝑥  We  𝐴 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							exlimdv | 
							⊢ ( ( 𝐴  ≼  𝑦  ∧  𝑦  ∈  On )  →  ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝑦  →  ∃ 𝑥 𝑥  We  𝐴 ) )  | 
						
						
							| 31 | 
							
								2 30
							 | 
							biimtrid | 
							⊢ ( ( 𝐴  ≼  𝑦  ∧  𝑦  ∈  On )  →  ( 𝐴  ≼  𝑦  →  ∃ 𝑥 𝑥  We  𝐴 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							ex | 
							⊢ ( 𝐴  ≼  𝑦  →  ( 𝑦  ∈  On  →  ( 𝐴  ≼  𝑦  →  ∃ 𝑥 𝑥  We  𝐴 ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							pm2.43b | 
							⊢ ( 𝑦  ∈  On  →  ( 𝐴  ≼  𝑦  →  ∃ 𝑥 𝑥  We  𝐴 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							rexlimiv | 
							⊢ ( ∃ 𝑦  ∈  On 𝐴  ≼  𝑦  →  ∃ 𝑥 𝑥  We  𝐴 )  |