Metamath Proof Explorer


Theorem ac4c

Description: Equivalent of Axiom of Choice (class version). (Contributed by NM, 10-Feb-1997)

Ref Expression
Hypothesis ac4c.1 𝐴 ∈ V
Assertion ac4c 𝑓𝑥𝐴 ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 )

Proof

Step Hyp Ref Expression
1 ac4c.1 𝐴 ∈ V
2 raleq ( 𝑦 = 𝐴 → ( ∀ 𝑥𝑦 ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 ) ↔ ∀ 𝑥𝐴 ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 ) ) )
3 2 exbidv ( 𝑦 = 𝐴 → ( ∃ 𝑓𝑥𝑦 ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 ) ↔ ∃ 𝑓𝑥𝐴 ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 ) ) )
4 ac4 𝑓𝑥𝑦 ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 )
5 1 3 4 vtocl 𝑓𝑥𝐴 ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 )