Description: Equivalent of Axiom of Choice (class version). (Contributed by NM, 10-Feb-1997)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ac4c.1 | ⊢ 𝐴 ∈ V | |
| Assertion | ac4c | ⊢ ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ac4c.1 | ⊢ 𝐴 ∈ V | |
| 2 | raleq | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) | |
| 3 | 2 | exbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑓 ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) | 
| 4 | ac4 | ⊢ ∃ 𝑓 ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) | |
| 5 | 1 3 4 | vtocl | ⊢ ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) |