Description: Equivalent of Axiom of Choice. B is a collection B ( x ) of nonempty sets. Remark after Theorem 10.46 of TakeutiZaring p. 98. (Contributed by Mario Carneiro, 22-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ac6c4.1 | ⊢ 𝐴 ∈ V | |
| ac6c4.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | ac6c5 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ac6c4.1 | ⊢ 𝐴 ∈ V | |
| 2 | ac6c4.2 | ⊢ 𝐵 ∈ V | |
| 3 | 1 2 | ac6c4 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) | 
| 4 | exsimpr | ⊢ ( ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) | |
| 5 | 3 4 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |