Metamath Proof Explorer


Theorem ac6gf

Description: Axiom of Choice. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses ac6gf.1 𝑦 𝜓
ac6gf.2 ( 𝑦 = ( 𝑓𝑥 ) → ( 𝜑𝜓 ) )
Assertion ac6gf ( ( 𝐴𝐶 ∧ ∀ 𝑥𝐴𝑦𝐵 𝜑 ) → ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 ac6gf.1 𝑦 𝜓
2 ac6gf.2 ( 𝑦 = ( 𝑓𝑥 ) → ( 𝜑𝜓 ) )
3 cbvrexsvw ( ∃ 𝑦𝐵 𝜑 ↔ ∃ 𝑧𝐵 [ 𝑧 / 𝑦 ] 𝜑 )
4 3 ralbii ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑥𝐴𝑧𝐵 [ 𝑧 / 𝑦 ] 𝜑 )
5 1 2 sbhypf ( 𝑧 = ( 𝑓𝑥 ) → ( [ 𝑧 / 𝑦 ] 𝜑𝜓 ) )
6 5 ac6sg ( 𝐴𝐶 → ( ∀ 𝑥𝐴𝑧𝐵 [ 𝑧 / 𝑦 ] 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝜓 ) ) )
7 6 imp ( ( 𝐴𝐶 ∧ ∀ 𝑥𝐴𝑧𝐵 [ 𝑧 / 𝑦 ] 𝜑 ) → ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝜓 ) )
8 4 7 sylan2b ( ( 𝐴𝐶 ∧ ∀ 𝑥𝐴𝑦𝐵 𝜑 ) → ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝜓 ) )