| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ac6s.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | ac6s.2 | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑥 )  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 3 | 2 | notbid | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑥 )  →  ( ¬  𝜑  ↔  ¬  𝜓 ) ) | 
						
							| 4 | 1 3 | ac6s | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ¬  𝜑  →  ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ¬  𝜓 ) ) | 
						
							| 5 | 4 | con3i | ⊢ ( ¬  ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ¬  𝜓 )  →  ¬  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ¬  𝜑 ) | 
						
							| 6 |  | dfrex2 | ⊢ ( ∃ 𝑥  ∈  𝐴 𝜓  ↔  ¬  ∀ 𝑥  ∈  𝐴 ¬  𝜓 ) | 
						
							| 7 | 6 | imbi2i | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵  →  ∃ 𝑥  ∈  𝐴 𝜓 )  ↔  ( 𝑓 : 𝐴 ⟶ 𝐵  →  ¬  ∀ 𝑥  ∈  𝐴 ¬  𝜓 ) ) | 
						
							| 8 | 7 | albii | ⊢ ( ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  →  ∃ 𝑥  ∈  𝐴 𝜓 )  ↔  ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  →  ¬  ∀ 𝑥  ∈  𝐴 ¬  𝜓 ) ) | 
						
							| 9 |  | alinexa | ⊢ ( ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  →  ¬  ∀ 𝑥  ∈  𝐴 ¬  𝜓 )  ↔  ¬  ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ¬  𝜓 ) ) | 
						
							| 10 | 8 9 | bitri | ⊢ ( ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  →  ∃ 𝑥  ∈  𝐴 𝜓 )  ↔  ¬  ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ¬  𝜓 ) ) | 
						
							| 11 |  | dfral2 | ⊢ ( ∀ 𝑦  ∈  𝐵 𝜑  ↔  ¬  ∃ 𝑦  ∈  𝐵 ¬  𝜑 ) | 
						
							| 12 | 11 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝜑  ↔  ∃ 𝑥  ∈  𝐴 ¬  ∃ 𝑦  ∈  𝐵 ¬  𝜑 ) | 
						
							| 13 |  | rexnal | ⊢ ( ∃ 𝑥  ∈  𝐴 ¬  ∃ 𝑦  ∈  𝐵 ¬  𝜑  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ¬  𝜑 ) | 
						
							| 14 | 12 13 | bitri | ⊢ ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝜑  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ¬  𝜑 ) | 
						
							| 15 | 5 10 14 | 3imtr4i | ⊢ ( ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  →  ∃ 𝑥  ∈  𝐴 𝜓 )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝜑 ) |