| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ac6num.1 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } |
| 3 |
2
|
nfel1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card |
| 4 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⊆ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 5 |
|
ssexg |
⊢ ( ( { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⊆ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ) → { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ V ) |
| 6 |
5
|
expcom |
⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card → ( { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⊆ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } → { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ V ) ) |
| 7 |
4 6
|
syl5 |
⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card → ( 𝑥 ∈ 𝐴 → { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ V ) ) |
| 8 |
3 7
|
ralrimi |
⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card → ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ V ) |
| 9 |
|
dfiun2g |
⊢ ( ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ V → ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } } ) |
| 10 |
8 9
|
syl |
⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card → ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } } ) |
| 11 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 12 |
11
|
rnmpt |
⊢ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } } |
| 13 |
12
|
unieqi |
⊢ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) = ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } } |
| 14 |
10 13
|
eqtr4di |
⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card → ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 15 |
|
id |
⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card → ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ) |
| 16 |
14 15
|
eqeltrrd |
⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card → ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ dom card ) |
| 17 |
16
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ dom card ) |
| 18 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) |
| 19 |
|
necom |
⊢ ( { 𝑦 ∈ 𝐵 ∣ 𝜑 } ≠ ∅ ↔ ∅ ≠ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 20 |
|
rabn0 |
⊢ ( { 𝑦 ∈ 𝐵 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑦 ∈ 𝐵 𝜑 ) |
| 21 |
|
df-ne |
⊢ ( ∅ ≠ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ↔ ¬ ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 22 |
19 20 21
|
3bitr3i |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 23 |
22
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ¬ ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 24 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 25 |
23 24
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 26 |
18 25
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ¬ ∃ 𝑥 ∈ 𝐴 ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 27 |
|
0ex |
⊢ ∅ ∈ V |
| 28 |
11
|
elrnmpt |
⊢ ( ∅ ∈ V → ( ∅ ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ↔ ∃ 𝑥 ∈ 𝐴 ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 29 |
27 28
|
ax-mp |
⊢ ( ∅ ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ↔ ∃ 𝑥 ∈ 𝐴 ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 30 |
26 29
|
sylnibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ¬ ∅ ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 31 |
|
ac5num |
⊢ ( ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ dom card ∧ ¬ ∅ ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ∃ 𝑔 ( 𝑔 : ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ⟶ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 32 |
17 30 31
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑔 ( 𝑔 : ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ⟶ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 33 |
|
ffn |
⊢ ( 𝑔 : ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ⟶ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) → 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 34 |
33
|
anim1i |
⊢ ( ( 𝑔 : ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ⟶ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 35 |
8
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ V ) |
| 36 |
|
fveq2 |
⊢ ( 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ( 𝑔 ‘ 𝑧 ) = ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 37 |
|
id |
⊢ ( 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } → 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 38 |
36 37
|
eleq12d |
⊢ ( 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ( ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 39 |
11 38
|
ralrnmptw |
⊢ ( ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 40 |
35 39
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 41 |
40
|
anbi2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ( ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ) |
| 42 |
34 41
|
imbitrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ( ( 𝑔 : ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ⟶ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ) |
| 43 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → 𝐴 ∈ 𝑉 ) |
| 44 |
43
|
mptexd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ∈ V ) |
| 45 |
|
elrabi |
⊢ ( ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ 𝐵 ) |
| 46 |
45
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ 𝐵 ) |
| 47 |
46
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ 𝐵 ) |
| 48 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 49 |
48
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) : 𝐴 ⟶ 𝐵 ) |
| 50 |
47 49
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) : 𝐴 ⟶ 𝐵 ) |
| 51 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 52 |
51
|
elrabsf |
⊢ ( ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ↔ ( ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ 𝐵 ∧ [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) ) |
| 53 |
52
|
simprbi |
⊢ ( ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } → [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) |
| 54 |
53
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ∀ 𝑥 ∈ 𝐴 [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) |
| 55 |
54
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ∀ 𝑥 ∈ 𝐴 [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) |
| 56 |
50 55
|
jca |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) ) |
| 57 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ( 𝑓 : 𝐴 ⟶ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) : 𝐴 ⟶ 𝐵 ) ) |
| 58 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 59 |
58
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 60 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑥 ) ∈ V |
| 61 |
60 1
|
sbcie |
⊢ ( [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ 𝜓 ) |
| 62 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ( 𝑓 ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ‘ 𝑥 ) ) |
| 63 |
|
fvex |
⊢ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ V |
| 64 |
48
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ V ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ‘ 𝑥 ) = ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 65 |
63 64
|
mpan2 |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ‘ 𝑥 ) = ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 66 |
62 65
|
sylan9eq |
⊢ ( ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 67 |
66
|
sbceq1d |
⊢ ( ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) ) |
| 68 |
61 67
|
bitr3id |
⊢ ( ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) ) |
| 69 |
59 68
|
ralbida |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) ) |
| 70 |
57 69
|
anbi12d |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) ) ) |
| 71 |
44 56 70
|
spcedv |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 72 |
71
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ( ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 73 |
42 72
|
syld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ( ( 𝑔 : ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ⟶ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 74 |
73
|
exlimdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ( ∃ 𝑔 ( 𝑔 : ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ⟶ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 75 |
32 74
|
mpd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |