| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ac6s.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | ac6s.2 | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑥 )  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 3 |  | rexv | ⊢ ( ∃ 𝑦  ∈  V 𝜑  ↔  ∃ 𝑦 𝜑 ) | 
						
							| 4 | 3 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  V 𝜑  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑦 𝜑 ) | 
						
							| 5 | 1 2 | ac6s | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  V 𝜑  →  ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ V  ∧  ∀ 𝑥  ∈  𝐴 𝜓 ) ) | 
						
							| 6 |  | ffn | ⊢ ( 𝑓 : 𝐴 ⟶ V  →  𝑓  Fn  𝐴 ) | 
						
							| 7 | 6 | anim1i | ⊢ ( ( 𝑓 : 𝐴 ⟶ V  ∧  ∀ 𝑥  ∈  𝐴 𝜓 )  →  ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 𝜓 ) ) | 
						
							| 8 | 7 | eximi | ⊢ ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ V  ∧  ∀ 𝑥  ∈  𝐴 𝜓 )  →  ∃ 𝑓 ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 𝜓 ) ) | 
						
							| 9 | 5 8 | syl | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  V 𝜑  →  ∃ 𝑓 ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 𝜓 ) ) | 
						
							| 10 | 4 9 | sylbir | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦 𝜑  →  ∃ 𝑓 ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 𝜓 ) ) |