Description: Generalization of the Axiom of Choice to classes, with bound-variable hypothesis. (Contributed by Giovanni Mascellani, 19-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ac6s3f.1 | ⊢ Ⅎ 𝑦 𝜓 | |
| ac6s3f.2 | ⊢ 𝐴 ∈ V | ||
| ac6s3f.3 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ac6s3f | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6s3f.1 | ⊢ Ⅎ 𝑦 𝜓 | |
| 2 | ac6s3f.2 | ⊢ 𝐴 ∈ V | |
| 3 | ac6s3f.3 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | rexv | ⊢ ( ∃ 𝑦 ∈ V 𝜑 ↔ ∃ 𝑦 𝜑 ) | |
| 5 | 4 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ V 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 ) |
| 6 | 5 | biimpri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ V 𝜑 ) |
| 7 | 1 2 3 | ac6sf | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ V 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ V ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 8 | exsimpr | ⊢ ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ V ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 𝜓 ) | |
| 9 | 6 7 8 | 3syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 𝜓 ) |