| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ac6s6f.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | ac6s6f.2 | ⊢ Ⅎ 𝑦 𝜓 | 
						
							| 3 |  | ac6s6f.3 | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑥 )  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 4 |  | ac6s6f.4 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 5 | 1 | isseti | ⊢ ∃ 𝑧 𝑧  =  𝐴 | 
						
							| 6 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 7 | 2 6 3 | ac6s6 | ⊢ ∃ 𝑓 ∀ 𝑥  ∈  𝑧 ( ∃ 𝑦 𝜑  →  𝜓 ) | 
						
							| 8 | 5 7 | exan | ⊢ ∃ 𝑧 ( 𝑧  =  𝐴  ∧  ∃ 𝑓 ∀ 𝑥  ∈  𝑧 ( ∃ 𝑦 𝜑  →  𝜓 ) ) | 
						
							| 9 |  | exdistr | ⊢ ( ∃ 𝑧 ∃ 𝑓 ( 𝑧  =  𝐴  ∧  ∀ 𝑥  ∈  𝑧 ( ∃ 𝑦 𝜑  →  𝜓 ) )  ↔  ∃ 𝑧 ( 𝑧  =  𝐴  ∧  ∃ 𝑓 ∀ 𝑥  ∈  𝑧 ( ∃ 𝑦 𝜑  →  𝜓 ) ) ) | 
						
							| 10 | 8 9 | mpbir | ⊢ ∃ 𝑧 ∃ 𝑓 ( 𝑧  =  𝐴  ∧  ∀ 𝑥  ∈  𝑧 ( ∃ 𝑦 𝜑  →  𝜓 ) ) | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑥 𝑧 | 
						
							| 12 | 11 4 | raleqf | ⊢ ( 𝑧  =  𝐴  →  ( ∀ 𝑥  ∈  𝑧 ( ∃ 𝑦 𝜑  →  𝜓 )  ↔  ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦 𝜑  →  𝜓 ) ) ) | 
						
							| 13 | 12 | biimpa | ⊢ ( ( 𝑧  =  𝐴  ∧  ∀ 𝑥  ∈  𝑧 ( ∃ 𝑦 𝜑  →  𝜓 ) )  →  ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦 𝜑  →  𝜓 ) ) | 
						
							| 14 | 13 | 2eximi | ⊢ ( ∃ 𝑧 ∃ 𝑓 ( 𝑧  =  𝐴  ∧  ∀ 𝑥  ∈  𝑧 ( ∃ 𝑦 𝜑  →  𝜓 ) )  →  ∃ 𝑧 ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦 𝜑  →  𝜓 ) ) | 
						
							| 15 |  | ax5e | ⊢ ( ∃ 𝑧 ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦 𝜑  →  𝜓 )  →  ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦 𝜑  →  𝜓 ) ) | 
						
							| 16 | 10 14 15 | mp2b | ⊢ ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦 𝜑  →  𝜓 ) |