Metamath Proof Explorer


Theorem ac6sf

Description: Version of ac6 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008)

Ref Expression
Hypotheses ac6sf.1 𝑦 𝜓
ac6sf.2 𝐴 ∈ V
ac6sf.3 ( 𝑦 = ( 𝑓𝑥 ) → ( 𝜑𝜓 ) )
Assertion ac6sf ( ∀ 𝑥𝐴𝑦𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 ac6sf.1 𝑦 𝜓
2 ac6sf.2 𝐴 ∈ V
3 ac6sf.3 ( 𝑦 = ( 𝑓𝑥 ) → ( 𝜑𝜓 ) )
4 cbvrexsvw ( ∃ 𝑦𝐵 𝜑 ↔ ∃ 𝑧𝐵 [ 𝑧 / 𝑦 ] 𝜑 )
5 4 ralbii ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑥𝐴𝑧𝐵 [ 𝑧 / 𝑦 ] 𝜑 )
6 1 3 sbhypf ( 𝑧 = ( 𝑓𝑥 ) → ( [ 𝑧 / 𝑦 ] 𝜑𝜓 ) )
7 2 6 ac6s ( ∀ 𝑥𝐴𝑧𝐵 [ 𝑧 / 𝑦 ] 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝜓 ) )
8 5 7 sylbi ( ∀ 𝑥𝐴𝑦𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝜓 ) )