Description: Version of ac6 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ac6sf.1 | ⊢ Ⅎ 𝑦 𝜓 | |
ac6sf.2 | ⊢ 𝐴 ∈ V | ||
ac6sf.3 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
Assertion | ac6sf | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac6sf.1 | ⊢ Ⅎ 𝑦 𝜓 | |
2 | ac6sf.2 | ⊢ 𝐴 ∈ V | |
3 | ac6sf.3 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | |
4 | cbvrexsvw | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑧 ∈ 𝐵 [ 𝑧 / 𝑦 ] 𝜑 ) | |
5 | 4 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 [ 𝑧 / 𝑦 ] 𝜑 ) |
6 | 1 3 | sbhypf | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑥 ) → ( [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |
7 | 2 6 | ac6s | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 [ 𝑧 / 𝑦 ] 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
8 | 5 7 | sylbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |