Step |
Hyp |
Ref |
Expression |
1 |
|
ac6sf2.y |
⊢ Ⅎ 𝑦 𝐵 |
2 |
|
ac6sf2.1 |
⊢ Ⅎ 𝑦 𝜓 |
3 |
|
ac6sf2.2 |
⊢ 𝐴 ∈ V |
4 |
|
ac6sf2.3 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐵 |
6 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
7 |
|
nfs1v |
⊢ Ⅎ 𝑦 [ 𝑧 / 𝑦 ] 𝜑 |
8 |
|
sbequ12 |
⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) ) |
9 |
1 5 6 7 8
|
cbvrexfw |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑧 ∈ 𝐵 [ 𝑧 / 𝑦 ] 𝜑 ) |
10 |
9
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 [ 𝑧 / 𝑦 ] 𝜑 ) |
11 |
2 4
|
sbhypf |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑥 ) → ( [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |
12 |
3 11
|
ac6s |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 [ 𝑧 / 𝑦 ] 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
13 |
10 12
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |