Step |
Hyp |
Ref |
Expression |
1 |
|
ac6sfi.1 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
raleq |
⊢ ( 𝑢 = ∅ → ( ∀ 𝑥 ∈ 𝑢 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
3 |
|
feq2 |
⊢ ( 𝑢 = ∅ → ( 𝑓 : 𝑢 ⟶ 𝐵 ↔ 𝑓 : ∅ ⟶ 𝐵 ) ) |
4 |
|
raleq |
⊢ ( 𝑢 = ∅ → ( ∀ 𝑥 ∈ 𝑢 𝜓 ↔ ∀ 𝑥 ∈ ∅ 𝜓 ) ) |
5 |
3 4
|
anbi12d |
⊢ ( 𝑢 = ∅ → ( ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ( 𝑓 : ∅ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ∅ 𝜓 ) ) ) |
6 |
5
|
exbidv |
⊢ ( 𝑢 = ∅ → ( ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ∃ 𝑓 ( 𝑓 : ∅ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ∅ 𝜓 ) ) ) |
7 |
2 6
|
imbi12d |
⊢ ( 𝑢 = ∅ → ( ( ∀ 𝑥 ∈ 𝑢 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ) ↔ ( ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : ∅ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ∅ 𝜓 ) ) ) ) |
8 |
|
raleq |
⊢ ( 𝑢 = 𝑤 → ( ∀ 𝑥 ∈ 𝑢 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ 𝑤 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
9 |
|
feq2 |
⊢ ( 𝑢 = 𝑤 → ( 𝑓 : 𝑢 ⟶ 𝐵 ↔ 𝑓 : 𝑤 ⟶ 𝐵 ) ) |
10 |
|
raleq |
⊢ ( 𝑢 = 𝑤 → ( ∀ 𝑥 ∈ 𝑢 𝜓 ↔ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) |
11 |
9 10
|
anbi12d |
⊢ ( 𝑢 = 𝑤 → ( ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) ) |
12 |
11
|
exbidv |
⊢ ( 𝑢 = 𝑤 → ( ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) ) |
13 |
8 12
|
imbi12d |
⊢ ( 𝑢 = 𝑤 → ( ( ∀ 𝑥 ∈ 𝑢 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ) ↔ ( ∀ 𝑥 ∈ 𝑤 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) ) ) |
14 |
|
raleq |
⊢ ( 𝑢 = ( 𝑤 ∪ { 𝑧 } ) → ( ∀ 𝑥 ∈ 𝑢 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
15 |
|
feq2 |
⊢ ( 𝑢 = ( 𝑤 ∪ { 𝑧 } ) → ( 𝑓 : 𝑢 ⟶ 𝐵 ↔ 𝑓 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ) ) |
16 |
|
raleq |
⊢ ( 𝑢 = ( 𝑤 ∪ { 𝑧 } ) → ( ∀ 𝑥 ∈ 𝑢 𝜓 ↔ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) 𝜓 ) ) |
17 |
15 16
|
anbi12d |
⊢ ( 𝑢 = ( 𝑤 ∪ { 𝑧 } ) → ( ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ( 𝑓 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) 𝜓 ) ) ) |
18 |
17
|
exbidv |
⊢ ( 𝑢 = ( 𝑤 ∪ { 𝑧 } ) → ( ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ∃ 𝑓 ( 𝑓 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) 𝜓 ) ) ) |
19 |
|
feq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ↔ 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ) ) |
20 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑥 ) ∈ V |
21 |
20 1
|
sbcie |
⊢ ( [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ 𝜓 ) |
22 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
23 |
22
|
sbceq1d |
⊢ ( 𝑓 = 𝑔 → ( [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
24 |
21 23
|
bitr3id |
⊢ ( 𝑓 = 𝑔 → ( 𝜓 ↔ [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
25 |
24
|
ralbidv |
⊢ ( 𝑓 = 𝑔 → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) 𝜓 ↔ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
26 |
19 25
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) 𝜓 ) ↔ ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) |
27 |
26
|
cbvexvw |
⊢ ( ∃ 𝑓 ( 𝑓 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) 𝜓 ) ↔ ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
28 |
18 27
|
bitrdi |
⊢ ( 𝑢 = ( 𝑤 ∪ { 𝑧 } ) → ( ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) |
29 |
14 28
|
imbi12d |
⊢ ( 𝑢 = ( 𝑤 ∪ { 𝑧 } ) → ( ( ∀ 𝑥 ∈ 𝑢 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ) ↔ ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) ) |
30 |
|
raleq |
⊢ ( 𝑢 = 𝐴 → ( ∀ 𝑥 ∈ 𝑢 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
31 |
|
feq2 |
⊢ ( 𝑢 = 𝐴 → ( 𝑓 : 𝑢 ⟶ 𝐵 ↔ 𝑓 : 𝐴 ⟶ 𝐵 ) ) |
32 |
|
raleq |
⊢ ( 𝑢 = 𝐴 → ( ∀ 𝑥 ∈ 𝑢 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
33 |
31 32
|
anbi12d |
⊢ ( 𝑢 = 𝐴 → ( ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
34 |
33
|
exbidv |
⊢ ( 𝑢 = 𝐴 → ( ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
35 |
30 34
|
imbi12d |
⊢ ( 𝑢 = 𝐴 → ( ( ∀ 𝑥 ∈ 𝑢 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) ) |
36 |
|
f0 |
⊢ ∅ : ∅ ⟶ 𝐵 |
37 |
|
0ex |
⊢ ∅ ∈ V |
38 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ 𝜓 |
39 |
38
|
biantru |
⊢ ( 𝑓 : ∅ ⟶ 𝐵 ↔ ( 𝑓 : ∅ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ∅ 𝜓 ) ) |
40 |
|
feq1 |
⊢ ( 𝑓 = ∅ → ( 𝑓 : ∅ ⟶ 𝐵 ↔ ∅ : ∅ ⟶ 𝐵 ) ) |
41 |
39 40
|
bitr3id |
⊢ ( 𝑓 = ∅ → ( ( 𝑓 : ∅ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ∅ 𝜓 ) ↔ ∅ : ∅ ⟶ 𝐵 ) ) |
42 |
37 41
|
spcev |
⊢ ( ∅ : ∅ ⟶ 𝐵 → ∃ 𝑓 ( 𝑓 : ∅ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ∅ 𝜓 ) ) |
43 |
36 42
|
mp1i |
⊢ ( ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : ∅ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ∅ 𝜓 ) ) |
44 |
|
ssun1 |
⊢ 𝑤 ⊆ ( 𝑤 ∪ { 𝑧 } ) |
45 |
|
ssralv |
⊢ ( 𝑤 ⊆ ( 𝑤 ∪ { 𝑧 } ) → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑥 ∈ 𝑤 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
46 |
44 45
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑥 ∈ 𝑤 ∃ 𝑦 ∈ 𝐵 𝜑 ) |
47 |
46
|
imim1i |
⊢ ( ( ∀ 𝑥 ∈ 𝑤 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) ) |
48 |
|
ssun2 |
⊢ { 𝑧 } ⊆ ( 𝑤 ∪ { 𝑧 } ) |
49 |
|
ssralv |
⊢ ( { 𝑧 } ⊆ ( 𝑤 ∪ { 𝑧 } ) → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑥 ∈ { 𝑧 } ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
50 |
48 49
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑥 ∈ { 𝑧 } ∃ 𝑦 ∈ 𝐵 𝜑 ) |
51 |
|
ralsnsg |
⊢ ( 𝑧 ∈ V → ( ∀ 𝑥 ∈ { 𝑧 } ∃ 𝑦 ∈ 𝐵 𝜑 ↔ [ 𝑧 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
52 |
51
|
elv |
⊢ ( ∀ 𝑥 ∈ { 𝑧 } ∃ 𝑦 ∈ 𝐵 𝜑 ↔ [ 𝑧 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ) |
53 |
|
sbcrex |
⊢ ( [ 𝑧 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) |
54 |
52 53
|
bitri |
⊢ ( ∀ 𝑥 ∈ { 𝑧 } ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) |
55 |
50 54
|
sylib |
⊢ ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) |
56 |
|
nfv |
⊢ Ⅎ 𝑦 ¬ 𝑧 ∈ 𝑤 |
57 |
|
nfv |
⊢ Ⅎ 𝑦 ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) |
58 |
|
nfv |
⊢ Ⅎ 𝑦 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 |
59 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝑤 ∪ { 𝑧 } ) |
60 |
|
nfsbc1v |
⊢ Ⅎ 𝑦 [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 |
61 |
59 60
|
nfralw |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 |
62 |
58 61
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) |
63 |
62
|
nfex |
⊢ Ⅎ 𝑦 ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) |
64 |
57 63
|
nfim |
⊢ Ⅎ 𝑦 ( ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
65 |
|
simprl |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → 𝑓 : 𝑤 ⟶ 𝐵 ) |
66 |
|
vex |
⊢ 𝑧 ∈ V |
67 |
|
vex |
⊢ 𝑦 ∈ V |
68 |
66 67
|
f1osn |
⊢ { 〈 𝑧 , 𝑦 〉 } : { 𝑧 } –1-1-onto→ { 𝑦 } |
69 |
|
f1of |
⊢ ( { 〈 𝑧 , 𝑦 〉 } : { 𝑧 } –1-1-onto→ { 𝑦 } → { 〈 𝑧 , 𝑦 〉 } : { 𝑧 } ⟶ { 𝑦 } ) |
70 |
68 69
|
mp1i |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → { 〈 𝑧 , 𝑦 〉 } : { 𝑧 } ⟶ { 𝑦 } ) |
71 |
|
simpl2 |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → 𝑦 ∈ 𝐵 ) |
72 |
71
|
snssd |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → { 𝑦 } ⊆ 𝐵 ) |
73 |
70 72
|
fssd |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → { 〈 𝑧 , 𝑦 〉 } : { 𝑧 } ⟶ 𝐵 ) |
74 |
|
simpl1 |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ¬ 𝑧 ∈ 𝑤 ) |
75 |
|
disjsn |
⊢ ( ( 𝑤 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑤 ) |
76 |
74 75
|
sylibr |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( 𝑤 ∩ { 𝑧 } ) = ∅ ) |
77 |
65 73 76
|
fun2d |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
78 |
|
simprr |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ∀ 𝑥 ∈ 𝑤 𝜓 ) |
79 |
|
eleq1a |
⊢ ( 𝑥 ∈ 𝑤 → ( 𝑧 = 𝑥 → 𝑧 ∈ 𝑤 ) ) |
80 |
79
|
necon3bd |
⊢ ( 𝑥 ∈ 𝑤 → ( ¬ 𝑧 ∈ 𝑤 → 𝑧 ≠ 𝑥 ) ) |
81 |
80
|
impcom |
⊢ ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 ≠ 𝑥 ) |
82 |
|
fvunsn |
⊢ ( 𝑧 ≠ 𝑥 → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
83 |
|
dfsbcq |
⊢ ( ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) → ( [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
84 |
83 21
|
bitr2di |
⊢ ( ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) → ( 𝜓 ↔ [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
85 |
81 82 84
|
3syl |
⊢ ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑥 ∈ 𝑤 ) → ( 𝜓 ↔ [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
86 |
85
|
ralbidva |
⊢ ( ¬ 𝑧 ∈ 𝑤 → ( ∀ 𝑥 ∈ 𝑤 𝜓 ↔ ∀ 𝑥 ∈ 𝑤 [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
87 |
74 86
|
syl |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( ∀ 𝑥 ∈ 𝑤 𝜓 ↔ ∀ 𝑥 ∈ 𝑤 [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
88 |
78 87
|
mpbid |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ∀ 𝑥 ∈ 𝑤 [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) |
89 |
|
simpl3 |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → [ 𝑧 / 𝑥 ] 𝜑 ) |
90 |
|
ffun |
⊢ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 → Fun ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ) |
91 |
|
ssun2 |
⊢ { 〈 𝑧 , 𝑦 〉 } ⊆ ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) |
92 |
|
vsnid |
⊢ 𝑧 ∈ { 𝑧 } |
93 |
67
|
dmsnop |
⊢ dom { 〈 𝑧 , 𝑦 〉 } = { 𝑧 } |
94 |
92 93
|
eleqtrri |
⊢ 𝑧 ∈ dom { 〈 𝑧 , 𝑦 〉 } |
95 |
|
funssfv |
⊢ ( ( Fun ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ∧ { 〈 𝑧 , 𝑦 〉 } ⊆ ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ∧ 𝑧 ∈ dom { 〈 𝑧 , 𝑦 〉 } ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) = ( { 〈 𝑧 , 𝑦 〉 } ‘ 𝑧 ) ) |
96 |
91 94 95
|
mp3an23 |
⊢ ( Fun ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) = ( { 〈 𝑧 , 𝑦 〉 } ‘ 𝑧 ) ) |
97 |
77 90 96
|
3syl |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) = ( { 〈 𝑧 , 𝑦 〉 } ‘ 𝑧 ) ) |
98 |
66 67
|
fvsn |
⊢ ( { 〈 𝑧 , 𝑦 〉 } ‘ 𝑧 ) = 𝑦 |
99 |
97 98
|
eqtr2di |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) ) |
100 |
|
ralsnsg |
⊢ ( 𝑧 ∈ V → ( ∀ 𝑥 ∈ { 𝑧 } 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
101 |
100
|
elv |
⊢ ( ∀ 𝑥 ∈ { 𝑧 } 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) |
102 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝑧 } → 𝑥 = 𝑧 ) |
103 |
102
|
fveq2d |
⊢ ( 𝑥 ∈ { 𝑧 } → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) ) |
104 |
103
|
eqeq2d |
⊢ ( 𝑥 ∈ { 𝑧 } → ( 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) ↔ 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) ) ) |
105 |
104
|
biimparc |
⊢ ( ( 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) ∧ 𝑥 ∈ { 𝑧 } ) → 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) ) |
106 |
|
sbceq1a |
⊢ ( 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) → ( 𝜑 ↔ [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
107 |
105 106
|
syl |
⊢ ( ( 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) ∧ 𝑥 ∈ { 𝑧 } ) → ( 𝜑 ↔ [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
108 |
107
|
ralbidva |
⊢ ( 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) → ( ∀ 𝑥 ∈ { 𝑧 } 𝜑 ↔ ∀ 𝑥 ∈ { 𝑧 } [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
109 |
101 108
|
bitr3id |
⊢ ( 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ∈ { 𝑧 } [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
110 |
99 109
|
syl |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ∈ { 𝑧 } [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
111 |
89 110
|
mpbid |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ∀ 𝑥 ∈ { 𝑧 } [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) |
112 |
|
ralun |
⊢ ( ( ∀ 𝑥 ∈ 𝑤 [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ∧ ∀ 𝑥 ∈ { 𝑧 } [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) |
113 |
88 111 112
|
syl2anc |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) |
114 |
|
vex |
⊢ 𝑓 ∈ V |
115 |
|
snex |
⊢ { 〈 𝑧 , 𝑦 〉 } ∈ V |
116 |
114 115
|
unex |
⊢ ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ∈ V |
117 |
|
feq1 |
⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) → ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ↔ ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ) ) |
118 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) → ( 𝑔 ‘ 𝑥 ) = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) ) |
119 |
118
|
sbceq1d |
⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) → ( [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
120 |
119
|
ralbidv |
⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
121 |
117 120
|
anbi12d |
⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) → ( ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ↔ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) |
122 |
116 121
|
spcev |
⊢ ( ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
123 |
77 113 122
|
syl2anc |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
124 |
123
|
ex |
⊢ ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) → ( ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) |
125 |
124
|
exlimdv |
⊢ ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) → ( ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) |
126 |
125
|
3exp |
⊢ ( ¬ 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝐵 → ( [ 𝑧 / 𝑥 ] 𝜑 → ( ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) ) ) |
127 |
56 64 126
|
rexlimd |
⊢ ( ¬ 𝑧 ∈ 𝑤 → ( ∃ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 → ( ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) ) |
128 |
55 127
|
syl5 |
⊢ ( ¬ 𝑧 ∈ 𝑤 → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ( ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) ) |
129 |
128
|
a2d |
⊢ ( ¬ 𝑧 ∈ 𝑤 → ( ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) ) |
130 |
47 129
|
syl5 |
⊢ ( ¬ 𝑧 ∈ 𝑤 → ( ( ∀ 𝑥 ∈ 𝑤 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) ) |
131 |
130
|
adantl |
⊢ ( ( 𝑤 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑤 ) → ( ( ∀ 𝑥 ∈ 𝑤 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) ) |
132 |
7 13 29 35 43 131
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
133 |
132
|
imp |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |