Metamath Proof Explorer


Theorem ac6sg

Description: ac6s with sethood as antecedent. (Contributed by FL, 3-Aug-2009)

Ref Expression
Hypothesis ac6sg.1 ( 𝑦 = ( 𝑓𝑥 ) → ( 𝜑𝜓 ) )
Assertion ac6sg ( 𝐴𝑉 → ( ∀ 𝑥𝐴𝑦𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 ac6sg.1 ( 𝑦 = ( 𝑓𝑥 ) → ( 𝜑𝜓 ) )
2 raleq ( 𝑧 = 𝐴 → ( ∀ 𝑥𝑧𝑦𝐵 𝜑 ↔ ∀ 𝑥𝐴𝑦𝐵 𝜑 ) )
3 feq2 ( 𝑧 = 𝐴 → ( 𝑓 : 𝑧𝐵𝑓 : 𝐴𝐵 ) )
4 raleq ( 𝑧 = 𝐴 → ( ∀ 𝑥𝑧 𝜓 ↔ ∀ 𝑥𝐴 𝜓 ) )
5 3 4 anbi12d ( 𝑧 = 𝐴 → ( ( 𝑓 : 𝑧𝐵 ∧ ∀ 𝑥𝑧 𝜓 ) ↔ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝜓 ) ) )
6 5 exbidv ( 𝑧 = 𝐴 → ( ∃ 𝑓 ( 𝑓 : 𝑧𝐵 ∧ ∀ 𝑥𝑧 𝜓 ) ↔ ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝜓 ) ) )
7 2 6 imbi12d ( 𝑧 = 𝐴 → ( ( ∀ 𝑥𝑧𝑦𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑧𝐵 ∧ ∀ 𝑥𝑧 𝜓 ) ) ↔ ( ∀ 𝑥𝐴𝑦𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝜓 ) ) ) )
8 vex 𝑧 ∈ V
9 8 1 ac6s ( ∀ 𝑥𝑧𝑦𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑧𝐵 ∧ ∀ 𝑥𝑧 𝜓 ) )
10 7 9 vtoclg ( 𝐴𝑉 → ( ∀ 𝑥𝐴𝑦𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝜓 ) ) )