| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ac6sg.1 | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑥 )  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | raleq | ⊢ ( 𝑧  =  𝐴  →  ( ∀ 𝑥  ∈  𝑧 ∃ 𝑦  ∈  𝐵 𝜑  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑 ) ) | 
						
							| 3 |  | feq2 | ⊢ ( 𝑧  =  𝐴  →  ( 𝑓 : 𝑧 ⟶ 𝐵  ↔  𝑓 : 𝐴 ⟶ 𝐵 ) ) | 
						
							| 4 |  | raleq | ⊢ ( 𝑧  =  𝐴  →  ( ∀ 𝑥  ∈  𝑧 𝜓  ↔  ∀ 𝑥  ∈  𝐴 𝜓 ) ) | 
						
							| 5 | 3 4 | anbi12d | ⊢ ( 𝑧  =  𝐴  →  ( ( 𝑓 : 𝑧 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝑧 𝜓 )  ↔  ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝜓 ) ) ) | 
						
							| 6 | 5 | exbidv | ⊢ ( 𝑧  =  𝐴  →  ( ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝑧 𝜓 )  ↔  ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝜓 ) ) ) | 
						
							| 7 | 2 6 | imbi12d | ⊢ ( 𝑧  =  𝐴  →  ( ( ∀ 𝑥  ∈  𝑧 ∃ 𝑦  ∈  𝐵 𝜑  →  ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝑧 𝜓 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  →  ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝜓 ) ) ) ) | 
						
							| 8 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 9 | 8 1 | ac6s | ⊢ ( ∀ 𝑥  ∈  𝑧 ∃ 𝑦  ∈  𝐵 𝜑  →  ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝑧 𝜓 ) ) | 
						
							| 10 | 7 9 | vtoclg | ⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  →  ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝜓 ) ) ) |