Step |
Hyp |
Ref |
Expression |
1 |
|
ac6sg.1 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
raleq |
⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
3 |
|
feq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝑓 : 𝑧 ⟶ 𝐵 ↔ 𝑓 : 𝐴 ⟶ 𝐵 ) ) |
4 |
|
raleq |
⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑥 ∈ 𝑧 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
5 |
3 4
|
anbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑓 : 𝑧 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑧 𝜓 ) ↔ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
6 |
5
|
exbidv |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑧 𝜓 ) ↔ ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
7 |
2 6
|
imbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑧 𝜓 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) ) |
8 |
|
vex |
⊢ 𝑧 ∈ V |
9 |
8 1
|
ac6s |
⊢ ( ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑧 𝜓 ) ) |
10 |
7 9
|
vtoclg |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |