Step |
Hyp |
Ref |
Expression |
1 |
|
ac6c4.1 |
⊢ 𝐴 ∈ V |
2 |
|
ac6c4.2 |
⊢ 𝐵 ∈ V |
3 |
1 2
|
ac6c4 |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
4 |
|
n0 |
⊢ ( X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) |
5 |
|
vex |
⊢ 𝑓 ∈ V |
6 |
5
|
elixp |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
7 |
6
|
exbii |
⊢ ( ∃ 𝑓 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
8 |
4 7
|
bitr2i |
⊢ ( ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ↔ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) |
9 |
3 8
|
sylib |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) |
10 |
|
ixpn0 |
⊢ ( X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) |
11 |
9 10
|
impbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) |