Metamath Proof Explorer


Theorem acacni

Description: A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion acacni ( ( CHOICE𝐴𝑉 ) → AC 𝐴 = V )

Proof

Step Hyp Ref Expression
1 simpr ( ( CHOICE𝐴𝑉 ) → 𝐴𝑉 )
2 vex 𝑥 ∈ V
3 simpl ( ( CHOICE𝐴𝑉 ) → CHOICE )
4 dfac10 ( CHOICE ↔ dom card = V )
5 3 4 sylib ( ( CHOICE𝐴𝑉 ) → dom card = V )
6 2 5 eleqtrrid ( ( CHOICE𝐴𝑉 ) → 𝑥 ∈ dom card )
7 numacn ( 𝐴𝑉 → ( 𝑥 ∈ dom card → 𝑥AC 𝐴 ) )
8 1 6 7 sylc ( ( CHOICE𝐴𝑉 ) → 𝑥AC 𝐴 )
9 2 a1i ( ( CHOICE𝐴𝑉 ) → 𝑥 ∈ V )
10 8 9 2thd ( ( CHOICE𝐴𝑉 ) → ( 𝑥AC 𝐴𝑥 ∈ V ) )
11 10 eqrdv ( ( CHOICE𝐴𝑉 ) → AC 𝐴 = V )