Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
2 |
|
vex |
⊢ 𝑥 ∈ V |
3 |
|
simpl |
⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → CHOICE ) |
4 |
|
dfac10 |
⊢ ( CHOICE ↔ dom card = V ) |
5 |
3 4
|
sylib |
⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → dom card = V ) |
6 |
2 5
|
eleqtrrid |
⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → 𝑥 ∈ dom card ) |
7 |
|
numacn |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ dom card → 𝑥 ∈ AC 𝐴 ) ) |
8 |
1 6 7
|
sylc |
⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → 𝑥 ∈ AC 𝐴 ) |
9 |
2
|
a1i |
⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → 𝑥 ∈ V ) |
10 |
8 9
|
2thd |
⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ AC 𝐴 ↔ 𝑥 ∈ V ) ) |
11 |
10
|
eqrdv |
⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → AC 𝐴 = V ) |