| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aceq3lem.1 | ⊢ 𝐹  =  ( 𝑤  ∈  dom  𝑦  ↦  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } ) ) | 
						
							| 2 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 3 | 2 | rnex | ⊢ ran  𝑦  ∈  V | 
						
							| 4 | 3 | pwex | ⊢ 𝒫  ran  𝑦  ∈  V | 
						
							| 5 |  | raleq | ⊢ ( 𝑥  =  𝒫  ran  𝑦  →  ( ∀ 𝑧  ∈  𝑥 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  ↔  ∀ 𝑧  ∈  𝒫  ran  𝑦 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) ) ) | 
						
							| 6 | 5 | exbidv | ⊢ ( 𝑥  =  𝒫  ran  𝑦  →  ( ∃ 𝑓 ∀ 𝑧  ∈  𝑥 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  ↔  ∃ 𝑓 ∀ 𝑧  ∈  𝒫  ran  𝑦 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) ) ) | 
						
							| 7 | 4 6 | spcv | ⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧  ∈  𝑥 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  →  ∃ 𝑓 ∀ 𝑧  ∈  𝒫  ran  𝑦 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) ) | 
						
							| 8 |  | df-mpt | ⊢ ( 𝑤  ∈  dom  𝑦  ↦  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } ) )  =  { 〈 𝑤 ,  ℎ 〉  ∣  ( 𝑤  ∈  dom  𝑦  ∧  ℎ  =  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } ) ) } | 
						
							| 9 | 1 8 | eqtri | ⊢ 𝐹  =  { 〈 𝑤 ,  ℎ 〉  ∣  ( 𝑤  ∈  dom  𝑦  ∧  ℎ  =  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } ) ) } | 
						
							| 10 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 11 | 10 | eldm | ⊢ ( 𝑤  ∈  dom  𝑦  ↔  ∃ 𝑢 𝑤 𝑦 𝑢 ) | 
						
							| 12 |  | abn0 | ⊢ ( { 𝑢  ∣  𝑤 𝑦 𝑢 }  ≠  ∅  ↔  ∃ 𝑢 𝑤 𝑦 𝑢 ) | 
						
							| 13 | 11 12 | bitr4i | ⊢ ( 𝑤  ∈  dom  𝑦  ↔  { 𝑢  ∣  𝑤 𝑦 𝑢 }  ≠  ∅ ) | 
						
							| 14 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 15 | 10 14 | brelrn | ⊢ ( 𝑤 𝑦 𝑢  →  𝑢  ∈  ran  𝑦 ) | 
						
							| 16 | 15 | abssi | ⊢ { 𝑢  ∣  𝑤 𝑦 𝑢 }  ⊆  ran  𝑦 | 
						
							| 17 | 3 16 | elpwi2 | ⊢ { 𝑢  ∣  𝑤 𝑦 𝑢 }  ∈  𝒫  ran  𝑦 | 
						
							| 18 |  | neeq1 | ⊢ ( 𝑧  =  { 𝑢  ∣  𝑤 𝑦 𝑢 }  →  ( 𝑧  ≠  ∅  ↔  { 𝑢  ∣  𝑤 𝑦 𝑢 }  ≠  ∅ ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑧  =  { 𝑢  ∣  𝑤 𝑦 𝑢 }  →  ( 𝑓 ‘ 𝑧 )  =  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } ) ) | 
						
							| 20 |  | id | ⊢ ( 𝑧  =  { 𝑢  ∣  𝑤 𝑦 𝑢 }  →  𝑧  =  { 𝑢  ∣  𝑤 𝑦 𝑢 } ) | 
						
							| 21 | 19 20 | eleq12d | ⊢ ( 𝑧  =  { 𝑢  ∣  𝑤 𝑦 𝑢 }  →  ( ( 𝑓 ‘ 𝑧 )  ∈  𝑧  ↔  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } )  ∈  { 𝑢  ∣  𝑤 𝑦 𝑢 } ) ) | 
						
							| 22 | 18 21 | imbi12d | ⊢ ( 𝑧  =  { 𝑢  ∣  𝑤 𝑦 𝑢 }  →  ( ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  ↔  ( { 𝑢  ∣  𝑤 𝑦 𝑢 }  ≠  ∅  →  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } )  ∈  { 𝑢  ∣  𝑤 𝑦 𝑢 } ) ) ) | 
						
							| 23 | 22 | rspcv | ⊢ ( { 𝑢  ∣  𝑤 𝑦 𝑢 }  ∈  𝒫  ran  𝑦  →  ( ∀ 𝑧  ∈  𝒫  ran  𝑦 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  →  ( { 𝑢  ∣  𝑤 𝑦 𝑢 }  ≠  ∅  →  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } )  ∈  { 𝑢  ∣  𝑤 𝑦 𝑢 } ) ) ) | 
						
							| 24 | 17 23 | ax-mp | ⊢ ( ∀ 𝑧  ∈  𝒫  ran  𝑦 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  →  ( { 𝑢  ∣  𝑤 𝑦 𝑢 }  ≠  ∅  →  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } )  ∈  { 𝑢  ∣  𝑤 𝑦 𝑢 } ) ) | 
						
							| 25 | 13 24 | biimtrid | ⊢ ( ∀ 𝑧  ∈  𝒫  ran  𝑦 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  →  ( 𝑤  ∈  dom  𝑦  →  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } )  ∈  { 𝑢  ∣  𝑤 𝑦 𝑢 } ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( ∀ 𝑧  ∈  𝒫  ran  𝑦 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  ∧  𝑤  ∈  dom  𝑦 )  →  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } )  ∈  { 𝑢  ∣  𝑤 𝑦 𝑢 } ) | 
						
							| 27 |  | fvex | ⊢ ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } )  ∈  V | 
						
							| 28 |  | breq2 | ⊢ ( 𝑧  =  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } )  →  ( 𝑤 𝑦 𝑧  ↔  𝑤 𝑦 ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } ) ) ) | 
						
							| 29 |  | breq2 | ⊢ ( 𝑢  =  𝑧  →  ( 𝑤 𝑦 𝑢  ↔  𝑤 𝑦 𝑧 ) ) | 
						
							| 30 | 29 | cbvabv | ⊢ { 𝑢  ∣  𝑤 𝑦 𝑢 }  =  { 𝑧  ∣  𝑤 𝑦 𝑧 } | 
						
							| 31 | 27 28 30 | elab2 | ⊢ ( ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } )  ∈  { 𝑢  ∣  𝑤 𝑦 𝑢 }  ↔  𝑤 𝑦 ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } ) ) | 
						
							| 32 | 26 31 | sylib | ⊢ ( ( ∀ 𝑧  ∈  𝒫  ran  𝑦 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  ∧  𝑤  ∈  dom  𝑦 )  →  𝑤 𝑦 ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } ) ) | 
						
							| 33 |  | breq2 | ⊢ ( ℎ  =  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } )  →  ( 𝑤 𝑦 ℎ  ↔  𝑤 𝑦 ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } ) ) ) | 
						
							| 34 | 32 33 | syl5ibrcom | ⊢ ( ( ∀ 𝑧  ∈  𝒫  ran  𝑦 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  ∧  𝑤  ∈  dom  𝑦 )  →  ( ℎ  =  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } )  →  𝑤 𝑦 ℎ ) ) | 
						
							| 35 | 34 | expimpd | ⊢ ( ∀ 𝑧  ∈  𝒫  ran  𝑦 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  →  ( ( 𝑤  ∈  dom  𝑦  ∧  ℎ  =  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } ) )  →  𝑤 𝑦 ℎ ) ) | 
						
							| 36 | 35 | ssopab2dv | ⊢ ( ∀ 𝑧  ∈  𝒫  ran  𝑦 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  →  { 〈 𝑤 ,  ℎ 〉  ∣  ( 𝑤  ∈  dom  𝑦  ∧  ℎ  =  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } ) ) }  ⊆  { 〈 𝑤 ,  ℎ 〉  ∣  𝑤 𝑦 ℎ } ) | 
						
							| 37 |  | opabss | ⊢ { 〈 𝑤 ,  ℎ 〉  ∣  𝑤 𝑦 ℎ }  ⊆  𝑦 | 
						
							| 38 | 36 37 | sstrdi | ⊢ ( ∀ 𝑧  ∈  𝒫  ran  𝑦 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  →  { 〈 𝑤 ,  ℎ 〉  ∣  ( 𝑤  ∈  dom  𝑦  ∧  ℎ  =  ( 𝑓 ‘ { 𝑢  ∣  𝑤 𝑦 𝑢 } ) ) }  ⊆  𝑦 ) | 
						
							| 39 | 9 38 | eqsstrid | ⊢ ( ∀ 𝑧  ∈  𝒫  ran  𝑦 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  →  𝐹  ⊆  𝑦 ) | 
						
							| 40 | 27 1 | fnmpti | ⊢ 𝐹  Fn  dom  𝑦 | 
						
							| 41 | 2 | ssex | ⊢ ( 𝐹  ⊆  𝑦  →  𝐹  ∈  V ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝐹  ⊆  𝑦  ∧  𝐹  Fn  dom  𝑦 )  →  𝐹  ∈  V ) | 
						
							| 43 |  | sseq1 | ⊢ ( 𝑔  =  𝐹  →  ( 𝑔  ⊆  𝑦  ↔  𝐹  ⊆  𝑦 ) ) | 
						
							| 44 |  | fneq1 | ⊢ ( 𝑔  =  𝐹  →  ( 𝑔  Fn  dom  𝑦  ↔  𝐹  Fn  dom  𝑦 ) ) | 
						
							| 45 | 43 44 | anbi12d | ⊢ ( 𝑔  =  𝐹  →  ( ( 𝑔  ⊆  𝑦  ∧  𝑔  Fn  dom  𝑦 )  ↔  ( 𝐹  ⊆  𝑦  ∧  𝐹  Fn  dom  𝑦 ) ) ) | 
						
							| 46 | 45 | spcegv | ⊢ ( 𝐹  ∈  V  →  ( ( 𝐹  ⊆  𝑦  ∧  𝐹  Fn  dom  𝑦 )  →  ∃ 𝑔 ( 𝑔  ⊆  𝑦  ∧  𝑔  Fn  dom  𝑦 ) ) ) | 
						
							| 47 | 42 46 | mpcom | ⊢ ( ( 𝐹  ⊆  𝑦  ∧  𝐹  Fn  dom  𝑦 )  →  ∃ 𝑔 ( 𝑔  ⊆  𝑦  ∧  𝑔  Fn  dom  𝑦 ) ) | 
						
							| 48 | 39 40 47 | sylancl | ⊢ ( ∀ 𝑧  ∈  𝒫  ran  𝑦 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  →  ∃ 𝑔 ( 𝑔  ⊆  𝑦  ∧  𝑔  Fn  dom  𝑦 ) ) | 
						
							| 49 | 48 | exlimiv | ⊢ ( ∃ 𝑓 ∀ 𝑧  ∈  𝒫  ran  𝑦 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  →  ∃ 𝑔 ( 𝑔  ⊆  𝑦  ∧  𝑔  Fn  dom  𝑦 ) ) | 
						
							| 50 | 7 49 | syl | ⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧  ∈  𝑥 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  →  ∃ 𝑔 ( 𝑔  ⊆  𝑦  ∧  𝑔  Fn  dom  𝑦 ) ) | 
						
							| 51 |  | sseq1 | ⊢ ( 𝑔  =  𝑓  →  ( 𝑔  ⊆  𝑦  ↔  𝑓  ⊆  𝑦 ) ) | 
						
							| 52 |  | fneq1 | ⊢ ( 𝑔  =  𝑓  →  ( 𝑔  Fn  dom  𝑦  ↔  𝑓  Fn  dom  𝑦 ) ) | 
						
							| 53 | 51 52 | anbi12d | ⊢ ( 𝑔  =  𝑓  →  ( ( 𝑔  ⊆  𝑦  ∧  𝑔  Fn  dom  𝑦 )  ↔  ( 𝑓  ⊆  𝑦  ∧  𝑓  Fn  dom  𝑦 ) ) ) | 
						
							| 54 | 53 | cbvexvw | ⊢ ( ∃ 𝑔 ( 𝑔  ⊆  𝑦  ∧  𝑔  Fn  dom  𝑦 )  ↔  ∃ 𝑓 ( 𝑓  ⊆  𝑦  ∧  𝑓  Fn  dom  𝑦 ) ) | 
						
							| 55 | 50 54 | sylib | ⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧  ∈  𝑥 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  →  ∃ 𝑓 ( 𝑓  ⊆  𝑦  ∧  𝑓  Fn  dom  𝑦 ) ) |