Metamath Proof Explorer


Theorem aciunf1lem

Description: Choice in an index union. (Contributed by Thierry Arnoux, 8-Nov-2019)

Ref Expression
Hypotheses acunirnmpt.0 ( 𝜑𝐴𝑉 )
acunirnmpt.1 ( ( 𝜑𝑗𝐴 ) → 𝐵 ≠ ∅ )
aciunf1lem.a 𝑗 𝐴
aciunf1lem.1 ( ( 𝜑𝑗𝐴 ) → 𝐵𝑊 )
Assertion aciunf1lem ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑥 ) ) = 𝑥 ) )

Proof

Step Hyp Ref Expression
1 acunirnmpt.0 ( 𝜑𝐴𝑉 )
2 acunirnmpt.1 ( ( 𝜑𝑗𝐴 ) → 𝐵 ≠ ∅ )
3 aciunf1lem.a 𝑗 𝐴
4 aciunf1lem.1 ( ( 𝜑𝑗𝐴 ) → 𝐵𝑊 )
5 nfiu1 𝑗 𝑗𝐴 𝐵
6 nfcsb1v 𝑗 ( 𝑔𝑥 ) / 𝑗 𝐵
7 eqid 𝑗𝐴 𝐵 = 𝑗𝐴 𝐵
8 csbeq1a ( 𝑗 = ( 𝑔𝑥 ) → 𝐵 = ( 𝑔𝑥 ) / 𝑗 𝐵 )
9 1 2 3 5 6 7 8 4 acunirnmpt2f ( 𝜑 → ∃ 𝑔 ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) )
10 nfv 𝑥 𝜑
11 nfv 𝑥 𝑔 : 𝑗𝐴 𝐵𝐴
12 nfra1 𝑥𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵
13 11 12 nfan 𝑥 ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 )
14 10 13 nfan 𝑥 ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) )
15 nfv 𝑗 𝜑
16 nfcv 𝑗 𝑔
17 16 5 3 nff 𝑗 𝑔 : 𝑗𝐴 𝐵𝐴
18 nfcv 𝑗 𝑥
19 18 6 nfel 𝑗 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵
20 5 19 nfralw 𝑗𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵
21 17 20 nfan 𝑗 ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 )
22 15 21 nfan 𝑗 ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) )
23 18 5 nfel 𝑗 𝑥 𝑗𝐴 𝐵
24 22 23 nfan 𝑗 ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 )
25 nfcv 𝑗 ⟨ ( 𝑔𝑥 ) , 𝑥
26 nfiu1 𝑗 𝑗𝐴 ( { 𝑗 } × 𝐵 )
27 25 26 nfel 𝑗 ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ 𝑗𝐴 ( { 𝑗 } × 𝐵 )
28 simplr ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) → ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) )
29 28 simpld ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) → 𝑔 : 𝑗𝐴 𝐵𝐴 )
30 29 ad2antrr ( ( ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) ∧ 𝑗𝐴 ) ∧ 𝑥𝐵 ) → 𝑔 : 𝑗𝐴 𝐵𝐴 )
31 simpllr ( ( ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) ∧ 𝑗𝐴 ) ∧ 𝑥𝐵 ) → 𝑥 𝑗𝐴 𝐵 )
32 30 31 ffvelrnd ( ( ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) ∧ 𝑗𝐴 ) ∧ 𝑥𝐵 ) → ( 𝑔𝑥 ) ∈ 𝐴 )
33 fvex ( 𝑔𝑥 ) ∈ V
34 33 snid ( 𝑔𝑥 ) ∈ { ( 𝑔𝑥 ) }
35 34 a1i ( ( ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) ∧ 𝑗𝐴 ) ∧ 𝑥𝐵 ) → ( 𝑔𝑥 ) ∈ { ( 𝑔𝑥 ) } )
36 28 simprd ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) → ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 )
37 simpr ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) → 𝑥 𝑗𝐴 𝐵 )
38 rsp ( ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 → ( 𝑥 𝑗𝐴 𝐵𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) )
39 36 37 38 sylc ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) → 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 )
40 39 ad2antrr ( ( ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) ∧ 𝑗𝐴 ) ∧ 𝑥𝐵 ) → 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 )
41 35 40 jca ( ( ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) ∧ 𝑗𝐴 ) ∧ 𝑥𝐵 ) → ( ( 𝑔𝑥 ) ∈ { ( 𝑔𝑥 ) } ∧ 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) )
42 opelxp ( ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ ( { ( 𝑔𝑥 ) } × ( 𝑔𝑥 ) / 𝑗 𝐵 ) ↔ ( ( 𝑔𝑥 ) ∈ { ( 𝑔𝑥 ) } ∧ 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) )
43 41 42 sylibr ( ( ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) ∧ 𝑗𝐴 ) ∧ 𝑥𝐵 ) → ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ ( { ( 𝑔𝑥 ) } × ( 𝑔𝑥 ) / 𝑗 𝐵 ) )
44 sneq ( 𝑘 = ( 𝑔𝑥 ) → { 𝑘 } = { ( 𝑔𝑥 ) } )
45 csbeq1 ( 𝑘 = ( 𝑔𝑥 ) → 𝑘 / 𝑗 𝐵 = ( 𝑔𝑥 ) / 𝑗 𝐵 )
46 44 45 xpeq12d ( 𝑘 = ( 𝑔𝑥 ) → ( { 𝑘 } × 𝑘 / 𝑗 𝐵 ) = ( { ( 𝑔𝑥 ) } × ( 𝑔𝑥 ) / 𝑗 𝐵 ) )
47 46 eleq2d ( 𝑘 = ( 𝑔𝑥 ) → ( ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ ( { 𝑘 } × 𝑘 / 𝑗 𝐵 ) ↔ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ ( { ( 𝑔𝑥 ) } × ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) )
48 47 rspcev ( ( ( 𝑔𝑥 ) ∈ 𝐴 ∧ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ ( { ( 𝑔𝑥 ) } × ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) → ∃ 𝑘𝐴 ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ ( { 𝑘 } × 𝑘 / 𝑗 𝐵 ) )
49 32 43 48 syl2anc ( ( ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) ∧ 𝑗𝐴 ) ∧ 𝑥𝐵 ) → ∃ 𝑘𝐴 ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ ( { 𝑘 } × 𝑘 / 𝑗 𝐵 ) )
50 eliun ( ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗𝐴 ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ ( { 𝑗 } × 𝐵 ) )
51 nfcv 𝑘 𝐴
52 nfv 𝑘 ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ ( { 𝑗 } × 𝐵 )
53 nfcv 𝑗 { 𝑘 }
54 nfcsb1v 𝑗 𝑘 / 𝑗 𝐵
55 53 54 nfxp 𝑗 ( { 𝑘 } × 𝑘 / 𝑗 𝐵 )
56 25 55 nfel 𝑗 ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ ( { 𝑘 } × 𝑘 / 𝑗 𝐵 )
57 sneq ( 𝑗 = 𝑘 → { 𝑗 } = { 𝑘 } )
58 csbeq1a ( 𝑗 = 𝑘𝐵 = 𝑘 / 𝑗 𝐵 )
59 57 58 xpeq12d ( 𝑗 = 𝑘 → ( { 𝑗 } × 𝐵 ) = ( { 𝑘 } × 𝑘 / 𝑗 𝐵 ) )
60 59 eleq2d ( 𝑗 = 𝑘 → ( ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ ( { 𝑗 } × 𝐵 ) ↔ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ ( { 𝑘 } × 𝑘 / 𝑗 𝐵 ) ) )
61 3 51 52 56 60 cbvrexfw ( ∃ 𝑗𝐴 ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑘𝐴 ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ ( { 𝑘 } × 𝑘 / 𝑗 𝐵 ) )
62 50 61 bitri ( ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑘𝐴 ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ ( { 𝑘 } × 𝑘 / 𝑗 𝐵 ) )
63 49 62 sylibr ( ( ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) ∧ 𝑗𝐴 ) ∧ 𝑥𝐵 ) → ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
64 eliun ( 𝑥 𝑗𝐴 𝐵 ↔ ∃ 𝑗𝐴 𝑥𝐵 )
65 64 biimpi ( 𝑥 𝑗𝐴 𝐵 → ∃ 𝑗𝐴 𝑥𝐵 )
66 65 adantl ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) → ∃ 𝑗𝐴 𝑥𝐵 )
67 24 27 63 66 r19.29af2 ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) → ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
68 67 ex ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) → ( 𝑥 𝑗𝐴 𝐵 → ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) )
69 14 68 ralrimi ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) → ∀ 𝑥 𝑗𝐴 𝐵 ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
70 vex 𝑥 ∈ V
71 33 70 opth ( ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ = ⟨ ( 𝑔𝑦 ) , 𝑦 ⟩ ↔ ( ( 𝑔𝑥 ) = ( 𝑔𝑦 ) ∧ 𝑥 = 𝑦 ) )
72 71 simprbi ( ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ = ⟨ ( 𝑔𝑦 ) , 𝑦 ⟩ → 𝑥 = 𝑦 )
73 72 rgen2w 𝑥 𝑗𝐴 𝐵𝑦 𝑗𝐴 𝐵 ( ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ = ⟨ ( 𝑔𝑦 ) , 𝑦 ⟩ → 𝑥 = 𝑦 )
74 73 a1i ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) → ∀ 𝑥 𝑗𝐴 𝐵𝑦 𝑗𝐴 𝐵 ( ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ = ⟨ ( 𝑔𝑦 ) , 𝑦 ⟩ → 𝑥 = 𝑦 ) )
75 69 74 jca ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) → ( ∀ 𝑥 𝑗𝐴 𝐵 ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 𝑗𝐴 𝐵𝑦 𝑗𝐴 𝐵 ( ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ = ⟨ ( 𝑔𝑦 ) , 𝑦 ⟩ → 𝑥 = 𝑦 ) ) )
76 eqid ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) = ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ )
77 fveq2 ( 𝑥 = 𝑦 → ( 𝑔𝑥 ) = ( 𝑔𝑦 ) )
78 id ( 𝑥 = 𝑦𝑥 = 𝑦 )
79 77 78 opeq12d ( 𝑥 = 𝑦 → ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ = ⟨ ( 𝑔𝑦 ) , 𝑦 ⟩ )
80 76 79 f1mpt ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ↔ ( ∀ 𝑥 𝑗𝐴 𝐵 ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 𝑗𝐴 𝐵𝑦 𝑗𝐴 𝐵 ( ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ = ⟨ ( 𝑔𝑦 ) , 𝑦 ⟩ → 𝑥 = 𝑦 ) ) )
81 75 80 sylibr ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) → ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
82 opex ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ V
83 76 fvmpt2 ( ( 𝑥 𝑗𝐴 𝐵 ∧ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ∈ V ) → ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ‘ 𝑥 ) = ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ )
84 82 83 mpan2 ( 𝑥 𝑗𝐴 𝐵 → ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ‘ 𝑥 ) = ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ )
85 37 84 syl ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) → ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ‘ 𝑥 ) = ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ )
86 85 fveq2d ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) → ( 2nd ‘ ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ‘ 𝑥 ) ) = ( 2nd ‘ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) )
87 33 70 op2nd ( 2nd ‘ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) = 𝑥
88 86 87 eqtrdi ( ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) ∧ 𝑥 𝑗𝐴 𝐵 ) → ( 2nd ‘ ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ‘ 𝑥 ) ) = 𝑥 )
89 88 ex ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) → ( 𝑥 𝑗𝐴 𝐵 → ( 2nd ‘ ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ‘ 𝑥 ) ) = 𝑥 ) )
90 14 89 ralrimi ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) → ∀ 𝑥 𝑗𝐴 𝐵 ( 2nd ‘ ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ‘ 𝑥 ) ) = 𝑥 )
91 81 90 jca ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) → ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 𝑗𝐴 𝐵 ( 2nd ‘ ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ‘ 𝑥 ) ) = 𝑥 ) )
92 nfcv 𝑗 𝑘
93 92 3 nfel 𝑗 𝑘𝐴
94 15 93 nfan 𝑗 ( 𝜑𝑘𝐴 )
95 nfcv 𝑗 𝑊
96 54 95 nfel 𝑗 𝑘 / 𝑗 𝐵𝑊
97 94 96 nfim 𝑗 ( ( 𝜑𝑘𝐴 ) → 𝑘 / 𝑗 𝐵𝑊 )
98 eleq1w ( 𝑗 = 𝑘 → ( 𝑗𝐴𝑘𝐴 ) )
99 98 anbi2d ( 𝑗 = 𝑘 → ( ( 𝜑𝑗𝐴 ) ↔ ( 𝜑𝑘𝐴 ) ) )
100 58 eleq1d ( 𝑗 = 𝑘 → ( 𝐵𝑊 𝑘 / 𝑗 𝐵𝑊 ) )
101 99 100 imbi12d ( 𝑗 = 𝑘 → ( ( ( 𝜑𝑗𝐴 ) → 𝐵𝑊 ) ↔ ( ( 𝜑𝑘𝐴 ) → 𝑘 / 𝑗 𝐵𝑊 ) ) )
102 97 101 4 chvarfv ( ( 𝜑𝑘𝐴 ) → 𝑘 / 𝑗 𝐵𝑊 )
103 102 ralrimiva ( 𝜑 → ∀ 𝑘𝐴 𝑘 / 𝑗 𝐵𝑊 )
104 nfcv 𝑘 𝐵
105 3 51 104 54 58 cbviunf 𝑗𝐴 𝐵 = 𝑘𝐴 𝑘 / 𝑗 𝐵
106 iunexg ( ( 𝐴𝑉 ∧ ∀ 𝑘𝐴 𝑘 / 𝑗 𝐵𝑊 ) → 𝑘𝐴 𝑘 / 𝑗 𝐵 ∈ V )
107 105 106 eqeltrid ( ( 𝐴𝑉 ∧ ∀ 𝑘𝐴 𝑘 / 𝑗 𝐵𝑊 ) → 𝑗𝐴 𝐵 ∈ V )
108 1 103 107 syl2anc ( 𝜑 𝑗𝐴 𝐵 ∈ V )
109 mptexg ( 𝑗𝐴 𝐵 ∈ V → ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ∈ V )
110 f1eq1 ( 𝑓 = ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) → ( 𝑓 : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ↔ ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) )
111 nfcv 𝑥 𝑓
112 nfmpt1 𝑥 ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ )
113 111 112 nfeq 𝑥 𝑓 = ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ )
114 fveq1 ( 𝑓 = ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) → ( 𝑓𝑥 ) = ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ‘ 𝑥 ) )
115 114 fveqeq2d ( 𝑓 = ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) → ( ( 2nd ‘ ( 𝑓𝑥 ) ) = 𝑥 ↔ ( 2nd ‘ ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ‘ 𝑥 ) ) = 𝑥 ) )
116 113 115 ralbid ( 𝑓 = ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) → ( ∀ 𝑥 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑥 ) ) = 𝑥 ↔ ∀ 𝑥 𝑗𝐴 𝐵 ( 2nd ‘ ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ‘ 𝑥 ) ) = 𝑥 ) )
117 110 116 anbi12d ( 𝑓 = ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) → ( ( 𝑓 : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑥 ) ) = 𝑥 ) ↔ ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 𝑗𝐴 𝐵 ( 2nd ‘ ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ‘ 𝑥 ) ) = 𝑥 ) ) )
118 117 spcegv ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ∈ V → ( ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 𝑗𝐴 𝐵 ( 2nd ‘ ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ‘ 𝑥 ) ) = 𝑥 ) → ∃ 𝑓 ( 𝑓 : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑥 ) ) = 𝑥 ) ) )
119 108 109 118 3syl ( 𝜑 → ( ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 𝑗𝐴 𝐵 ( 2nd ‘ ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ‘ 𝑥 ) ) = 𝑥 ) → ∃ 𝑓 ( 𝑓 : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑥 ) ) = 𝑥 ) ) )
120 119 adantr ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) → ( ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 𝑗𝐴 𝐵 ( 2nd ‘ ( ( 𝑥 𝑗𝐴 𝐵 ↦ ⟨ ( 𝑔𝑥 ) , 𝑥 ⟩ ) ‘ 𝑥 ) ) = 𝑥 ) → ∃ 𝑓 ( 𝑓 : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑥 ) ) = 𝑥 ) ) )
121 91 120 mpd ( ( 𝜑 ∧ ( 𝑔 : 𝑗𝐴 𝐵𝐴 ∧ ∀ 𝑥 𝑗𝐴 𝐵 𝑥 ( 𝑔𝑥 ) / 𝑗 𝐵 ) ) → ∃ 𝑓 ( 𝑓 : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑥 ) ) = 𝑥 ) )
122 9 121 exlimddv ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑥 ) ) = 𝑥 ) )