Step |
Hyp |
Ref |
Expression |
1 |
|
ackbij.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
2 |
1
|
ackbij1lem17 |
⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω |
3 |
|
f1f |
⊢ ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω → 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω ) |
4 |
|
frn |
⊢ ( 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω → ran 𝐹 ⊆ ω ) |
5 |
2 3 4
|
mp2b |
⊢ ran 𝐹 ⊆ ω |
6 |
|
eleq1 |
⊢ ( 𝑏 = ∅ → ( 𝑏 ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹 ) ) |
7 |
|
eleq1 |
⊢ ( 𝑏 = 𝑎 → ( 𝑏 ∈ ran 𝐹 ↔ 𝑎 ∈ ran 𝐹 ) ) |
8 |
|
eleq1 |
⊢ ( 𝑏 = suc 𝑎 → ( 𝑏 ∈ ran 𝐹 ↔ suc 𝑎 ∈ ran 𝐹 ) ) |
9 |
|
peano1 |
⊢ ∅ ∈ ω |
10 |
|
ackbij1lem3 |
⊢ ( ∅ ∈ ω → ∅ ∈ ( 𝒫 ω ∩ Fin ) ) |
11 |
9 10
|
ax-mp |
⊢ ∅ ∈ ( 𝒫 ω ∩ Fin ) |
12 |
1
|
ackbij1lem13 |
⊢ ( 𝐹 ‘ ∅ ) = ∅ |
13 |
|
fveqeq2 |
⊢ ( 𝑎 = ∅ → ( ( 𝐹 ‘ 𝑎 ) = ∅ ↔ ( 𝐹 ‘ ∅ ) = ∅ ) ) |
14 |
13
|
rspcev |
⊢ ( ( ∅ ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐹 ‘ ∅ ) = ∅ ) → ∃ 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑎 ) = ∅ ) |
15 |
11 12 14
|
mp2an |
⊢ ∃ 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑎 ) = ∅ |
16 |
|
f1fn |
⊢ ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω → 𝐹 Fn ( 𝒫 ω ∩ Fin ) ) |
17 |
2 16
|
ax-mp |
⊢ 𝐹 Fn ( 𝒫 ω ∩ Fin ) |
18 |
|
fvelrnb |
⊢ ( 𝐹 Fn ( 𝒫 ω ∩ Fin ) → ( ∅ ∈ ran 𝐹 ↔ ∃ 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑎 ) = ∅ ) ) |
19 |
17 18
|
ax-mp |
⊢ ( ∅ ∈ ran 𝐹 ↔ ∃ 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑎 ) = ∅ ) |
20 |
15 19
|
mpbir |
⊢ ∅ ∈ ran 𝐹 |
21 |
1
|
ackbij1lem18 |
⊢ ( 𝑐 ∈ ( 𝒫 ω ∩ Fin ) → ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc ( 𝐹 ‘ 𝑐 ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑐 ∈ ( 𝒫 ω ∩ Fin ) ) → ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc ( 𝐹 ‘ 𝑐 ) ) |
23 |
|
suceq |
⊢ ( ( 𝐹 ‘ 𝑐 ) = 𝑎 → suc ( 𝐹 ‘ 𝑐 ) = suc 𝑎 ) |
24 |
23
|
eqeq2d |
⊢ ( ( 𝐹 ‘ 𝑐 ) = 𝑎 → ( ( 𝐹 ‘ 𝑏 ) = suc ( 𝐹 ‘ 𝑐 ) ↔ ( 𝐹 ‘ 𝑏 ) = suc 𝑎 ) ) |
25 |
24
|
rexbidv |
⊢ ( ( 𝐹 ‘ 𝑐 ) = 𝑎 → ( ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc ( 𝐹 ‘ 𝑐 ) ↔ ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc 𝑎 ) ) |
26 |
22 25
|
syl5ibcom |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑐 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ 𝑐 ) = 𝑎 → ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc 𝑎 ) ) |
27 |
26
|
rexlimdva |
⊢ ( 𝑎 ∈ ω → ( ∃ 𝑐 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑐 ) = 𝑎 → ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc 𝑎 ) ) |
28 |
|
fvelrnb |
⊢ ( 𝐹 Fn ( 𝒫 ω ∩ Fin ) → ( 𝑎 ∈ ran 𝐹 ↔ ∃ 𝑐 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑐 ) = 𝑎 ) ) |
29 |
17 28
|
ax-mp |
⊢ ( 𝑎 ∈ ran 𝐹 ↔ ∃ 𝑐 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑐 ) = 𝑎 ) |
30 |
|
fvelrnb |
⊢ ( 𝐹 Fn ( 𝒫 ω ∩ Fin ) → ( suc 𝑎 ∈ ran 𝐹 ↔ ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc 𝑎 ) ) |
31 |
17 30
|
ax-mp |
⊢ ( suc 𝑎 ∈ ran 𝐹 ↔ ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc 𝑎 ) |
32 |
27 29 31
|
3imtr4g |
⊢ ( 𝑎 ∈ ω → ( 𝑎 ∈ ran 𝐹 → suc 𝑎 ∈ ran 𝐹 ) ) |
33 |
6 7 8 7 20 32
|
finds |
⊢ ( 𝑎 ∈ ω → 𝑎 ∈ ran 𝐹 ) |
34 |
33
|
ssriv |
⊢ ω ⊆ ran 𝐹 |
35 |
5 34
|
eqssi |
⊢ ran 𝐹 = ω |
36 |
|
dff1o5 |
⊢ ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1-onto→ ω ↔ ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω ∧ ran 𝐹 = ω ) ) |
37 |
2 35 36
|
mpbir2an |
⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1-onto→ ω |