| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackbij.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 𝒫  ω  ∩  Fin )  ↦  ( card ‘ ∪  𝑦  ∈  𝑥 ( { 𝑦 }  ×  𝒫  𝑦 ) ) ) | 
						
							| 2 | 1 | ackbij1lem17 | ⊢ 𝐹 : ( 𝒫  ω  ∩  Fin ) –1-1→ ω | 
						
							| 3 |  | ackbij2lem1 | ⊢ ( 𝐴  ∈  ω  →  𝒫  𝐴  ⊆  ( 𝒫  ω  ∩  Fin ) ) | 
						
							| 4 |  | pwexg | ⊢ ( 𝐴  ∈  ω  →  𝒫  𝐴  ∈  V ) | 
						
							| 5 |  | f1imaeng | ⊢ ( ( 𝐹 : ( 𝒫  ω  ∩  Fin ) –1-1→ ω  ∧  𝒫  𝐴  ⊆  ( 𝒫  ω  ∩  Fin )  ∧  𝒫  𝐴  ∈  V )  →  ( 𝐹  “  𝒫  𝐴 )  ≈  𝒫  𝐴 ) | 
						
							| 6 | 2 3 4 5 | mp3an2i | ⊢ ( 𝐴  ∈  ω  →  ( 𝐹  “  𝒫  𝐴 )  ≈  𝒫  𝐴 ) | 
						
							| 7 |  | nnfi | ⊢ ( 𝐴  ∈  ω  →  𝐴  ∈  Fin ) | 
						
							| 8 |  | pwfi | ⊢ ( 𝐴  ∈  Fin  ↔  𝒫  𝐴  ∈  Fin ) | 
						
							| 9 | 7 8 | sylib | ⊢ ( 𝐴  ∈  ω  →  𝒫  𝐴  ∈  Fin ) | 
						
							| 10 |  | ficardid | ⊢ ( 𝒫  𝐴  ∈  Fin  →  ( card ‘ 𝒫  𝐴 )  ≈  𝒫  𝐴 ) | 
						
							| 11 |  | ensym | ⊢ ( ( card ‘ 𝒫  𝐴 )  ≈  𝒫  𝐴  →  𝒫  𝐴  ≈  ( card ‘ 𝒫  𝐴 ) ) | 
						
							| 12 | 9 10 11 | 3syl | ⊢ ( 𝐴  ∈  ω  →  𝒫  𝐴  ≈  ( card ‘ 𝒫  𝐴 ) ) | 
						
							| 13 |  | entr | ⊢ ( ( ( 𝐹  “  𝒫  𝐴 )  ≈  𝒫  𝐴  ∧  𝒫  𝐴  ≈  ( card ‘ 𝒫  𝐴 ) )  →  ( 𝐹  “  𝒫  𝐴 )  ≈  ( card ‘ 𝒫  𝐴 ) ) | 
						
							| 14 | 6 12 13 | syl2anc | ⊢ ( 𝐴  ∈  ω  →  ( 𝐹  “  𝒫  𝐴 )  ≈  ( card ‘ 𝒫  𝐴 ) ) | 
						
							| 15 |  | onfin2 | ⊢ ω  =  ( On  ∩  Fin ) | 
						
							| 16 |  | inss2 | ⊢ ( On  ∩  Fin )  ⊆  Fin | 
						
							| 17 | 15 16 | eqsstri | ⊢ ω  ⊆  Fin | 
						
							| 18 |  | ficardom | ⊢ ( 𝒫  𝐴  ∈  Fin  →  ( card ‘ 𝒫  𝐴 )  ∈  ω ) | 
						
							| 19 | 9 18 | syl | ⊢ ( 𝐴  ∈  ω  →  ( card ‘ 𝒫  𝐴 )  ∈  ω ) | 
						
							| 20 | 17 19 | sselid | ⊢ ( 𝐴  ∈  ω  →  ( card ‘ 𝒫  𝐴 )  ∈  Fin ) | 
						
							| 21 |  | php3 | ⊢ ( ( ( card ‘ 𝒫  𝐴 )  ∈  Fin  ∧  ( 𝐹  “  𝒫  𝐴 )  ⊊  ( card ‘ 𝒫  𝐴 ) )  →  ( 𝐹  “  𝒫  𝐴 )  ≺  ( card ‘ 𝒫  𝐴 ) ) | 
						
							| 22 | 21 | ex | ⊢ ( ( card ‘ 𝒫  𝐴 )  ∈  Fin  →  ( ( 𝐹  “  𝒫  𝐴 )  ⊊  ( card ‘ 𝒫  𝐴 )  →  ( 𝐹  “  𝒫  𝐴 )  ≺  ( card ‘ 𝒫  𝐴 ) ) ) | 
						
							| 23 | 20 22 | syl | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝐹  “  𝒫  𝐴 )  ⊊  ( card ‘ 𝒫  𝐴 )  →  ( 𝐹  “  𝒫  𝐴 )  ≺  ( card ‘ 𝒫  𝐴 ) ) ) | 
						
							| 24 |  | sdomnen | ⊢ ( ( 𝐹  “  𝒫  𝐴 )  ≺  ( card ‘ 𝒫  𝐴 )  →  ¬  ( 𝐹  “  𝒫  𝐴 )  ≈  ( card ‘ 𝒫  𝐴 ) ) | 
						
							| 25 | 23 24 | syl6 | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝐹  “  𝒫  𝐴 )  ⊊  ( card ‘ 𝒫  𝐴 )  →  ¬  ( 𝐹  “  𝒫  𝐴 )  ≈  ( card ‘ 𝒫  𝐴 ) ) ) | 
						
							| 26 | 14 25 | mt2d | ⊢ ( 𝐴  ∈  ω  →  ¬  ( 𝐹  “  𝒫  𝐴 )  ⊊  ( card ‘ 𝒫  𝐴 ) ) | 
						
							| 27 |  | fvex | ⊢ ( 𝐹 ‘ 𝑎 )  ∈  V | 
						
							| 28 |  | ackbij1lem3 | ⊢ ( 𝐴  ∈  ω  →  𝐴  ∈  ( 𝒫  ω  ∩  Fin ) ) | 
						
							| 29 |  | elpwi | ⊢ ( 𝑎  ∈  𝒫  𝐴  →  𝑎  ⊆  𝐴 ) | 
						
							| 30 | 1 | ackbij1lem12 | ⊢ ( ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  ∧  𝑎  ⊆  𝐴 )  →  ( 𝐹 ‘ 𝑎 )  ⊆  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 31 | 28 29 30 | syl2an | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑎  ∈  𝒫  𝐴 )  →  ( 𝐹 ‘ 𝑎 )  ⊆  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 32 | 1 | ackbij1lem10 | ⊢ 𝐹 : ( 𝒫  ω  ∩  Fin ) ⟶ ω | 
						
							| 33 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 34 | 32 33 | f0cli | ⊢ ( 𝐹 ‘ 𝑎 )  ∈  ω | 
						
							| 35 |  | nnord | ⊢ ( ( 𝐹 ‘ 𝑎 )  ∈  ω  →  Ord  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 36 | 34 35 | ax-mp | ⊢ Ord  ( 𝐹 ‘ 𝑎 ) | 
						
							| 37 | 32 33 | f0cli | ⊢ ( 𝐹 ‘ 𝐴 )  ∈  ω | 
						
							| 38 |  | nnord | ⊢ ( ( 𝐹 ‘ 𝐴 )  ∈  ω  →  Ord  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 39 | 37 38 | ax-mp | ⊢ Ord  ( 𝐹 ‘ 𝐴 ) | 
						
							| 40 |  | ordsucsssuc | ⊢ ( ( Ord  ( 𝐹 ‘ 𝑎 )  ∧  Ord  ( 𝐹 ‘ 𝐴 ) )  →  ( ( 𝐹 ‘ 𝑎 )  ⊆  ( 𝐹 ‘ 𝐴 )  ↔  suc  ( 𝐹 ‘ 𝑎 )  ⊆  suc  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 41 | 36 39 40 | mp2an | ⊢ ( ( 𝐹 ‘ 𝑎 )  ⊆  ( 𝐹 ‘ 𝐴 )  ↔  suc  ( 𝐹 ‘ 𝑎 )  ⊆  suc  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 42 | 31 41 | sylib | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑎  ∈  𝒫  𝐴 )  →  suc  ( 𝐹 ‘ 𝑎 )  ⊆  suc  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 43 | 1 | ackbij1lem14 | ⊢ ( 𝐴  ∈  ω  →  ( 𝐹 ‘ { 𝐴 } )  =  suc  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 44 | 1 | ackbij1lem8 | ⊢ ( 𝐴  ∈  ω  →  ( 𝐹 ‘ { 𝐴 } )  =  ( card ‘ 𝒫  𝐴 ) ) | 
						
							| 45 | 43 44 | eqtr3d | ⊢ ( 𝐴  ∈  ω  →  suc  ( 𝐹 ‘ 𝐴 )  =  ( card ‘ 𝒫  𝐴 ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑎  ∈  𝒫  𝐴 )  →  suc  ( 𝐹 ‘ 𝐴 )  =  ( card ‘ 𝒫  𝐴 ) ) | 
						
							| 47 | 42 46 | sseqtrd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑎  ∈  𝒫  𝐴 )  →  suc  ( 𝐹 ‘ 𝑎 )  ⊆  ( card ‘ 𝒫  𝐴 ) ) | 
						
							| 48 |  | sucssel | ⊢ ( ( 𝐹 ‘ 𝑎 )  ∈  V  →  ( suc  ( 𝐹 ‘ 𝑎 )  ⊆  ( card ‘ 𝒫  𝐴 )  →  ( 𝐹 ‘ 𝑎 )  ∈  ( card ‘ 𝒫  𝐴 ) ) ) | 
						
							| 49 | 27 47 48 | mpsyl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑎  ∈  𝒫  𝐴 )  →  ( 𝐹 ‘ 𝑎 )  ∈  ( card ‘ 𝒫  𝐴 ) ) | 
						
							| 50 | 49 | ralrimiva | ⊢ ( 𝐴  ∈  ω  →  ∀ 𝑎  ∈  𝒫  𝐴 ( 𝐹 ‘ 𝑎 )  ∈  ( card ‘ 𝒫  𝐴 ) ) | 
						
							| 51 |  | f1fun | ⊢ ( 𝐹 : ( 𝒫  ω  ∩  Fin ) –1-1→ ω  →  Fun  𝐹 ) | 
						
							| 52 | 2 51 | ax-mp | ⊢ Fun  𝐹 | 
						
							| 53 |  | f1dm | ⊢ ( 𝐹 : ( 𝒫  ω  ∩  Fin ) –1-1→ ω  →  dom  𝐹  =  ( 𝒫  ω  ∩  Fin ) ) | 
						
							| 54 | 2 53 | ax-mp | ⊢ dom  𝐹  =  ( 𝒫  ω  ∩  Fin ) | 
						
							| 55 | 3 54 | sseqtrrdi | ⊢ ( 𝐴  ∈  ω  →  𝒫  𝐴  ⊆  dom  𝐹 ) | 
						
							| 56 |  | funimass4 | ⊢ ( ( Fun  𝐹  ∧  𝒫  𝐴  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  𝒫  𝐴 )  ⊆  ( card ‘ 𝒫  𝐴 )  ↔  ∀ 𝑎  ∈  𝒫  𝐴 ( 𝐹 ‘ 𝑎 )  ∈  ( card ‘ 𝒫  𝐴 ) ) ) | 
						
							| 57 | 52 55 56 | sylancr | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝐹  “  𝒫  𝐴 )  ⊆  ( card ‘ 𝒫  𝐴 )  ↔  ∀ 𝑎  ∈  𝒫  𝐴 ( 𝐹 ‘ 𝑎 )  ∈  ( card ‘ 𝒫  𝐴 ) ) ) | 
						
							| 58 | 50 57 | mpbird | ⊢ ( 𝐴  ∈  ω  →  ( 𝐹  “  𝒫  𝐴 )  ⊆  ( card ‘ 𝒫  𝐴 ) ) | 
						
							| 59 |  | sspss | ⊢ ( ( 𝐹  “  𝒫  𝐴 )  ⊆  ( card ‘ 𝒫  𝐴 )  ↔  ( ( 𝐹  “  𝒫  𝐴 )  ⊊  ( card ‘ 𝒫  𝐴 )  ∨  ( 𝐹  “  𝒫  𝐴 )  =  ( card ‘ 𝒫  𝐴 ) ) ) | 
						
							| 60 | 58 59 | sylib | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝐹  “  𝒫  𝐴 )  ⊊  ( card ‘ 𝒫  𝐴 )  ∨  ( 𝐹  “  𝒫  𝐴 )  =  ( card ‘ 𝒫  𝐴 ) ) ) | 
						
							| 61 |  | orel1 | ⊢ ( ¬  ( 𝐹  “  𝒫  𝐴 )  ⊊  ( card ‘ 𝒫  𝐴 )  →  ( ( ( 𝐹  “  𝒫  𝐴 )  ⊊  ( card ‘ 𝒫  𝐴 )  ∨  ( 𝐹  “  𝒫  𝐴 )  =  ( card ‘ 𝒫  𝐴 ) )  →  ( 𝐹  “  𝒫  𝐴 )  =  ( card ‘ 𝒫  𝐴 ) ) ) | 
						
							| 62 | 26 60 61 | sylc | ⊢ ( 𝐴  ∈  ω  →  ( 𝐹  “  𝒫  𝐴 )  =  ( card ‘ 𝒫  𝐴 ) ) |