Step |
Hyp |
Ref |
Expression |
1 |
|
ackbij.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
2 |
1
|
ackbij1lem17 |
⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω |
3 |
|
ackbij2lem1 |
⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ⊆ ( 𝒫 ω ∩ Fin ) ) |
4 |
|
pwexg |
⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ∈ V ) |
5 |
|
f1imaeng |
⊢ ( ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω ∧ 𝒫 𝐴 ⊆ ( 𝒫 ω ∩ Fin ) ∧ 𝒫 𝐴 ∈ V ) → ( 𝐹 “ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |
6 |
2 3 4 5
|
mp3an2i |
⊢ ( 𝐴 ∈ ω → ( 𝐹 “ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |
7 |
|
nnfi |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) |
8 |
|
pwfi |
⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) |
9 |
7 8
|
sylib |
⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ∈ Fin ) |
10 |
|
ficardid |
⊢ ( 𝒫 𝐴 ∈ Fin → ( card ‘ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |
11 |
|
ensym |
⊢ ( ( card ‘ 𝒫 𝐴 ) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ ( card ‘ 𝒫 𝐴 ) ) |
12 |
9 10 11
|
3syl |
⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ≈ ( card ‘ 𝒫 𝐴 ) ) |
13 |
|
entr |
⊢ ( ( ( 𝐹 “ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ∧ 𝒫 𝐴 ≈ ( card ‘ 𝒫 𝐴 ) ) → ( 𝐹 “ 𝒫 𝐴 ) ≈ ( card ‘ 𝒫 𝐴 ) ) |
14 |
6 12 13
|
syl2anc |
⊢ ( 𝐴 ∈ ω → ( 𝐹 “ 𝒫 𝐴 ) ≈ ( card ‘ 𝒫 𝐴 ) ) |
15 |
|
onfin2 |
⊢ ω = ( On ∩ Fin ) |
16 |
|
inss2 |
⊢ ( On ∩ Fin ) ⊆ Fin |
17 |
15 16
|
eqsstri |
⊢ ω ⊆ Fin |
18 |
|
ficardom |
⊢ ( 𝒫 𝐴 ∈ Fin → ( card ‘ 𝒫 𝐴 ) ∈ ω ) |
19 |
9 18
|
syl |
⊢ ( 𝐴 ∈ ω → ( card ‘ 𝒫 𝐴 ) ∈ ω ) |
20 |
17 19
|
sselid |
⊢ ( 𝐴 ∈ ω → ( card ‘ 𝒫 𝐴 ) ∈ Fin ) |
21 |
|
php3 |
⊢ ( ( ( card ‘ 𝒫 𝐴 ) ∈ Fin ∧ ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) ) → ( 𝐹 “ 𝒫 𝐴 ) ≺ ( card ‘ 𝒫 𝐴 ) ) |
22 |
21
|
ex |
⊢ ( ( card ‘ 𝒫 𝐴 ) ∈ Fin → ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) → ( 𝐹 “ 𝒫 𝐴 ) ≺ ( card ‘ 𝒫 𝐴 ) ) ) |
23 |
20 22
|
syl |
⊢ ( 𝐴 ∈ ω → ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) → ( 𝐹 “ 𝒫 𝐴 ) ≺ ( card ‘ 𝒫 𝐴 ) ) ) |
24 |
|
sdomnen |
⊢ ( ( 𝐹 “ 𝒫 𝐴 ) ≺ ( card ‘ 𝒫 𝐴 ) → ¬ ( 𝐹 “ 𝒫 𝐴 ) ≈ ( card ‘ 𝒫 𝐴 ) ) |
25 |
23 24
|
syl6 |
⊢ ( 𝐴 ∈ ω → ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) → ¬ ( 𝐹 “ 𝒫 𝐴 ) ≈ ( card ‘ 𝒫 𝐴 ) ) ) |
26 |
14 25
|
mt2d |
⊢ ( 𝐴 ∈ ω → ¬ ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) ) |
27 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑎 ) ∈ V |
28 |
|
ackbij1lem3 |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) |
29 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴 ) |
30 |
1
|
ackbij1lem12 |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑎 ⊆ 𝐴 ) → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) |
31 |
28 29 30
|
syl2an |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) |
32 |
1
|
ackbij1lem10 |
⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω |
33 |
|
peano1 |
⊢ ∅ ∈ ω |
34 |
32 33
|
f0cli |
⊢ ( 𝐹 ‘ 𝑎 ) ∈ ω |
35 |
|
nnord |
⊢ ( ( 𝐹 ‘ 𝑎 ) ∈ ω → Ord ( 𝐹 ‘ 𝑎 ) ) |
36 |
34 35
|
ax-mp |
⊢ Ord ( 𝐹 ‘ 𝑎 ) |
37 |
32 33
|
f0cli |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ ω |
38 |
|
nnord |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ω → Ord ( 𝐹 ‘ 𝐴 ) ) |
39 |
37 38
|
ax-mp |
⊢ Ord ( 𝐹 ‘ 𝐴 ) |
40 |
|
ordsucsssuc |
⊢ ( ( Ord ( 𝐹 ‘ 𝑎 ) ∧ Ord ( 𝐹 ‘ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝐴 ) ↔ suc ( 𝐹 ‘ 𝑎 ) ⊆ suc ( 𝐹 ‘ 𝐴 ) ) ) |
41 |
36 39 40
|
mp2an |
⊢ ( ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝐴 ) ↔ suc ( 𝐹 ‘ 𝑎 ) ⊆ suc ( 𝐹 ‘ 𝐴 ) ) |
42 |
31 41
|
sylib |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → suc ( 𝐹 ‘ 𝑎 ) ⊆ suc ( 𝐹 ‘ 𝐴 ) ) |
43 |
1
|
ackbij1lem14 |
⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ { 𝐴 } ) = suc ( 𝐹 ‘ 𝐴 ) ) |
44 |
1
|
ackbij1lem8 |
⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ { 𝐴 } ) = ( card ‘ 𝒫 𝐴 ) ) |
45 |
43 44
|
eqtr3d |
⊢ ( 𝐴 ∈ ω → suc ( 𝐹 ‘ 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → suc ( 𝐹 ‘ 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) |
47 |
42 46
|
sseqtrd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → suc ( 𝐹 ‘ 𝑎 ) ⊆ ( card ‘ 𝒫 𝐴 ) ) |
48 |
|
sucssel |
⊢ ( ( 𝐹 ‘ 𝑎 ) ∈ V → ( suc ( 𝐹 ‘ 𝑎 ) ⊆ ( card ‘ 𝒫 𝐴 ) → ( 𝐹 ‘ 𝑎 ) ∈ ( card ‘ 𝒫 𝐴 ) ) ) |
49 |
27 47 48
|
mpsyl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( 𝐹 ‘ 𝑎 ) ∈ ( card ‘ 𝒫 𝐴 ) ) |
50 |
49
|
ralrimiva |
⊢ ( 𝐴 ∈ ω → ∀ 𝑎 ∈ 𝒫 𝐴 ( 𝐹 ‘ 𝑎 ) ∈ ( card ‘ 𝒫 𝐴 ) ) |
51 |
|
f1fun |
⊢ ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω → Fun 𝐹 ) |
52 |
2 51
|
ax-mp |
⊢ Fun 𝐹 |
53 |
|
f1dm |
⊢ ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω → dom 𝐹 = ( 𝒫 ω ∩ Fin ) ) |
54 |
2 53
|
ax-mp |
⊢ dom 𝐹 = ( 𝒫 ω ∩ Fin ) |
55 |
3 54
|
sseqtrrdi |
⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ⊆ dom 𝐹 ) |
56 |
|
funimass4 |
⊢ ( ( Fun 𝐹 ∧ 𝒫 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝒫 𝐴 ) ⊆ ( card ‘ 𝒫 𝐴 ) ↔ ∀ 𝑎 ∈ 𝒫 𝐴 ( 𝐹 ‘ 𝑎 ) ∈ ( card ‘ 𝒫 𝐴 ) ) ) |
57 |
52 55 56
|
sylancr |
⊢ ( 𝐴 ∈ ω → ( ( 𝐹 “ 𝒫 𝐴 ) ⊆ ( card ‘ 𝒫 𝐴 ) ↔ ∀ 𝑎 ∈ 𝒫 𝐴 ( 𝐹 ‘ 𝑎 ) ∈ ( card ‘ 𝒫 𝐴 ) ) ) |
58 |
50 57
|
mpbird |
⊢ ( 𝐴 ∈ ω → ( 𝐹 “ 𝒫 𝐴 ) ⊆ ( card ‘ 𝒫 𝐴 ) ) |
59 |
|
sspss |
⊢ ( ( 𝐹 “ 𝒫 𝐴 ) ⊆ ( card ‘ 𝒫 𝐴 ) ↔ ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) ∨ ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) ) |
60 |
58 59
|
sylib |
⊢ ( 𝐴 ∈ ω → ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) ∨ ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) ) |
61 |
|
orel1 |
⊢ ( ¬ ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) → ( ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) ∨ ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) → ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) ) |
62 |
26 60 61
|
sylc |
⊢ ( 𝐴 ∈ ω → ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) |