Metamath Proof Explorer


Theorem ackbij1lem1

Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Assertion ackbij1lem1 ( ¬ 𝐴𝐵 → ( 𝐵 ∩ suc 𝐴 ) = ( 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-suc suc 𝐴 = ( 𝐴 ∪ { 𝐴 } )
2 1 ineq2i ( 𝐵 ∩ suc 𝐴 ) = ( 𝐵 ∩ ( 𝐴 ∪ { 𝐴 } ) )
3 indi ( 𝐵 ∩ ( 𝐴 ∪ { 𝐴 } ) ) = ( ( 𝐵𝐴 ) ∪ ( 𝐵 ∩ { 𝐴 } ) )
4 2 3 eqtri ( 𝐵 ∩ suc 𝐴 ) = ( ( 𝐵𝐴 ) ∪ ( 𝐵 ∩ { 𝐴 } ) )
5 disjsn ( ( 𝐵 ∩ { 𝐴 } ) = ∅ ↔ ¬ 𝐴𝐵 )
6 5 biimpri ( ¬ 𝐴𝐵 → ( 𝐵 ∩ { 𝐴 } ) = ∅ )
7 6 uneq2d ( ¬ 𝐴𝐵 → ( ( 𝐵𝐴 ) ∪ ( 𝐵 ∩ { 𝐴 } ) ) = ( ( 𝐵𝐴 ) ∪ ∅ ) )
8 un0 ( ( 𝐵𝐴 ) ∪ ∅ ) = ( 𝐵𝐴 )
9 7 8 eqtrdi ( ¬ 𝐴𝐵 → ( ( 𝐵𝐴 ) ∪ ( 𝐵 ∩ { 𝐴 } ) ) = ( 𝐵𝐴 ) )
10 4 9 eqtrid ( ¬ 𝐴𝐵 → ( 𝐵 ∩ suc 𝐴 ) = ( 𝐵𝐴 ) )