| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-suc |
⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) |
| 2 |
1
|
ineq2i |
⊢ ( 𝐵 ∩ suc 𝐴 ) = ( 𝐵 ∩ ( 𝐴 ∪ { 𝐴 } ) ) |
| 3 |
|
indi |
⊢ ( 𝐵 ∩ ( 𝐴 ∪ { 𝐴 } ) ) = ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∩ { 𝐴 } ) ) |
| 4 |
2 3
|
eqtri |
⊢ ( 𝐵 ∩ suc 𝐴 ) = ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∩ { 𝐴 } ) ) |
| 5 |
|
disjsn |
⊢ ( ( 𝐵 ∩ { 𝐴 } ) = ∅ ↔ ¬ 𝐴 ∈ 𝐵 ) |
| 6 |
5
|
biimpri |
⊢ ( ¬ 𝐴 ∈ 𝐵 → ( 𝐵 ∩ { 𝐴 } ) = ∅ ) |
| 7 |
6
|
uneq2d |
⊢ ( ¬ 𝐴 ∈ 𝐵 → ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∩ { 𝐴 } ) ) = ( ( 𝐵 ∩ 𝐴 ) ∪ ∅ ) ) |
| 8 |
|
un0 |
⊢ ( ( 𝐵 ∩ 𝐴 ) ∪ ∅ ) = ( 𝐵 ∩ 𝐴 ) |
| 9 |
7 8
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ 𝐵 → ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∩ { 𝐴 } ) ) = ( 𝐵 ∩ 𝐴 ) ) |
| 10 |
4 9
|
eqtrid |
⊢ ( ¬ 𝐴 ∈ 𝐵 → ( 𝐵 ∩ suc 𝐴 ) = ( 𝐵 ∩ 𝐴 ) ) |