Step |
Hyp |
Ref |
Expression |
1 |
|
df-suc |
⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) |
2 |
1
|
ineq2i |
⊢ ( 𝐵 ∩ suc 𝐴 ) = ( 𝐵 ∩ ( 𝐴 ∪ { 𝐴 } ) ) |
3 |
|
indi |
⊢ ( 𝐵 ∩ ( 𝐴 ∪ { 𝐴 } ) ) = ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∩ { 𝐴 } ) ) |
4 |
2 3
|
eqtri |
⊢ ( 𝐵 ∩ suc 𝐴 ) = ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∩ { 𝐴 } ) ) |
5 |
|
disjsn |
⊢ ( ( 𝐵 ∩ { 𝐴 } ) = ∅ ↔ ¬ 𝐴 ∈ 𝐵 ) |
6 |
5
|
biimpri |
⊢ ( ¬ 𝐴 ∈ 𝐵 → ( 𝐵 ∩ { 𝐴 } ) = ∅ ) |
7 |
6
|
uneq2d |
⊢ ( ¬ 𝐴 ∈ 𝐵 → ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∩ { 𝐴 } ) ) = ( ( 𝐵 ∩ 𝐴 ) ∪ ∅ ) ) |
8 |
|
un0 |
⊢ ( ( 𝐵 ∩ 𝐴 ) ∪ ∅ ) = ( 𝐵 ∩ 𝐴 ) |
9 |
7 8
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ 𝐵 → ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∩ { 𝐴 } ) ) = ( 𝐵 ∩ 𝐴 ) ) |
10 |
4 9
|
eqtrid |
⊢ ( ¬ 𝐴 ∈ 𝐵 → ( 𝐵 ∩ suc 𝐴 ) = ( 𝐵 ∩ 𝐴 ) ) |