| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackbij.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 𝒫  ω  ∩  Fin )  ↦  ( card ‘ ∪  𝑦  ∈  𝑥 ( { 𝑦 }  ×  𝒫  𝑦 ) ) ) | 
						
							| 2 | 1 | ackbij1lem10 | ⊢ 𝐹 : ( 𝒫  ω  ∩  Fin ) ⟶ ω | 
						
							| 3 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 4 | 2 3 | f0cli | ⊢ ( 𝐹 ‘ ∅ )  ∈  ω | 
						
							| 5 |  | nna0 | ⊢ ( ( 𝐹 ‘ ∅ )  ∈  ω  →  ( ( 𝐹 ‘ ∅ )  +o  ∅ )  =  ( 𝐹 ‘ ∅ ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ( ( 𝐹 ‘ ∅ )  +o  ∅ )  =  ( 𝐹 ‘ ∅ ) | 
						
							| 7 |  | un0 | ⊢ ( ∅  ∪  ∅ )  =  ∅ | 
						
							| 8 | 7 | fveq2i | ⊢ ( 𝐹 ‘ ( ∅  ∪  ∅ ) )  =  ( 𝐹 ‘ ∅ ) | 
						
							| 9 |  | ackbij1lem3 | ⊢ ( ∅  ∈  ω  →  ∅  ∈  ( 𝒫  ω  ∩  Fin ) ) | 
						
							| 10 | 3 9 | ax-mp | ⊢ ∅  ∈  ( 𝒫  ω  ∩  Fin ) | 
						
							| 11 |  | in0 | ⊢ ( ∅  ∩  ∅ )  =  ∅ | 
						
							| 12 | 1 | ackbij1lem9 | ⊢ ( ( ∅  ∈  ( 𝒫  ω  ∩  Fin )  ∧  ∅  ∈  ( 𝒫  ω  ∩  Fin )  ∧  ( ∅  ∩  ∅ )  =  ∅ )  →  ( 𝐹 ‘ ( ∅  ∪  ∅ ) )  =  ( ( 𝐹 ‘ ∅ )  +o  ( 𝐹 ‘ ∅ ) ) ) | 
						
							| 13 | 10 10 11 12 | mp3an | ⊢ ( 𝐹 ‘ ( ∅  ∪  ∅ ) )  =  ( ( 𝐹 ‘ ∅ )  +o  ( 𝐹 ‘ ∅ ) ) | 
						
							| 14 | 6 8 13 | 3eqtr2ri | ⊢ ( ( 𝐹 ‘ ∅ )  +o  ( 𝐹 ‘ ∅ ) )  =  ( ( 𝐹 ‘ ∅ )  +o  ∅ ) | 
						
							| 15 |  | nnacan | ⊢ ( ( ( 𝐹 ‘ ∅ )  ∈  ω  ∧  ( 𝐹 ‘ ∅ )  ∈  ω  ∧  ∅  ∈  ω )  →  ( ( ( 𝐹 ‘ ∅ )  +o  ( 𝐹 ‘ ∅ ) )  =  ( ( 𝐹 ‘ ∅ )  +o  ∅ )  ↔  ( 𝐹 ‘ ∅ )  =  ∅ ) ) | 
						
							| 16 | 4 4 3 15 | mp3an | ⊢ ( ( ( 𝐹 ‘ ∅ )  +o  ( 𝐹 ‘ ∅ ) )  =  ( ( 𝐹 ‘ ∅ )  +o  ∅ )  ↔  ( 𝐹 ‘ ∅ )  =  ∅ ) | 
						
							| 17 | 14 16 | mpbi | ⊢ ( 𝐹 ‘ ∅ )  =  ∅ |