Step |
Hyp |
Ref |
Expression |
1 |
|
ackbij.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
2 |
|
inss1 |
⊢ ( 𝒫 ω ∩ Fin ) ⊆ 𝒫 ω |
3 |
2
|
sseli |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → 𝐴 ∈ 𝒫 ω ) |
4 |
3
|
elpwid |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → 𝐴 ⊆ ω ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → 𝐴 ⊆ ω ) |
6 |
2
|
sseli |
⊢ ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) → 𝐵 ∈ 𝒫 ω ) |
7 |
6
|
elpwid |
⊢ ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) → 𝐵 ⊆ ω ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → 𝐵 ⊆ ω ) |
9 |
5 8
|
unssd |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ ω ) |
10 |
|
inss2 |
⊢ ( 𝒫 ω ∩ Fin ) ⊆ Fin |
11 |
10
|
sseli |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → 𝐴 ∈ Fin ) |
12 |
10
|
sseli |
⊢ ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) → 𝐵 ∈ Fin ) |
13 |
|
unfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
14 |
11 12 13
|
syl2an |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
15 |
|
nnunifi |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ω ∧ ( 𝐴 ∪ 𝐵 ) ∈ Fin ) → ∪ ( 𝐴 ∪ 𝐵 ) ∈ ω ) |
16 |
9 14 15
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ∪ ( 𝐴 ∪ 𝐵 ) ∈ ω ) |
17 |
|
peano2 |
⊢ ( ∪ ( 𝐴 ∪ 𝐵 ) ∈ ω → suc ∪ ( 𝐴 ∪ 𝐵 ) ∈ ω ) |
18 |
16 17
|
syl |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → suc ∪ ( 𝐴 ∪ 𝐵 ) ∈ ω ) |
19 |
|
ineq2 |
⊢ ( 𝑎 = ∅ → ( 𝐴 ∩ 𝑎 ) = ( 𝐴 ∩ ∅ ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑎 = ∅ → ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐴 ∩ ∅ ) ) ) |
21 |
|
ineq2 |
⊢ ( 𝑎 = ∅ → ( 𝐵 ∩ 𝑎 ) = ( 𝐵 ∩ ∅ ) ) |
22 |
21
|
fveq2d |
⊢ ( 𝑎 = ∅ → ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ ∅ ) ) ) |
23 |
20 22
|
eqeq12d |
⊢ ( 𝑎 = ∅ → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ ∅ ) ) = ( 𝐹 ‘ ( 𝐵 ∩ ∅ ) ) ) ) |
24 |
19 21
|
eqeq12d |
⊢ ( 𝑎 = ∅ → ( ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ↔ ( 𝐴 ∩ ∅ ) = ( 𝐵 ∩ ∅ ) ) ) |
25 |
23 24
|
imbi12d |
⊢ ( 𝑎 = ∅ → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ) ↔ ( ( 𝐹 ‘ ( 𝐴 ∩ ∅ ) ) = ( 𝐹 ‘ ( 𝐵 ∩ ∅ ) ) → ( 𝐴 ∩ ∅ ) = ( 𝐵 ∩ ∅ ) ) ) ) |
26 |
25
|
imbi2d |
⊢ ( 𝑎 = ∅ → ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ) ) ↔ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ ∅ ) ) = ( 𝐹 ‘ ( 𝐵 ∩ ∅ ) ) → ( 𝐴 ∩ ∅ ) = ( 𝐵 ∩ ∅ ) ) ) ) ) |
27 |
|
ineq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐴 ∩ 𝑎 ) = ( 𝐴 ∩ 𝑏 ) ) |
28 |
27
|
fveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
29 |
|
ineq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐵 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑏 ) ) |
30 |
29
|
fveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) |
31 |
28 30
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
32 |
27 29
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ↔ ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) ) |
33 |
31 32
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ) ↔ ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) ) ) |
34 |
33
|
imbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ) ) ↔ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) ) ) ) |
35 |
|
ineq2 |
⊢ ( 𝑎 = suc 𝑏 → ( 𝐴 ∩ 𝑎 ) = ( 𝐴 ∩ suc 𝑏 ) ) |
36 |
35
|
fveq2d |
⊢ ( 𝑎 = suc 𝑏 → ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) ) |
37 |
|
ineq2 |
⊢ ( 𝑎 = suc 𝑏 → ( 𝐵 ∩ 𝑎 ) = ( 𝐵 ∩ suc 𝑏 ) ) |
38 |
37
|
fveq2d |
⊢ ( 𝑎 = suc 𝑏 → ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) |
39 |
36 38
|
eqeq12d |
⊢ ( 𝑎 = suc 𝑏 → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ) |
40 |
35 37
|
eqeq12d |
⊢ ( 𝑎 = suc 𝑏 → ( ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ↔ ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
41 |
39 40
|
imbi12d |
⊢ ( 𝑎 = suc 𝑏 → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ) ↔ ( ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) |
42 |
41
|
imbi2d |
⊢ ( 𝑎 = suc 𝑏 → ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ) ) ↔ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) ) |
43 |
|
ineq2 |
⊢ ( 𝑎 = suc ∪ ( 𝐴 ∪ 𝐵 ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) |
44 |
43
|
fveq2d |
⊢ ( 𝑎 = suc ∪ ( 𝐴 ∪ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
45 |
|
ineq2 |
⊢ ( 𝑎 = suc ∪ ( 𝐴 ∪ 𝐵 ) → ( 𝐵 ∩ 𝑎 ) = ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) |
46 |
45
|
fveq2d |
⊢ ( 𝑎 = suc ∪ ( 𝐴 ∪ 𝐵 ) → ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
47 |
44 46
|
eqeq12d |
⊢ ( 𝑎 = suc ∪ ( 𝐴 ∪ 𝐵 ) → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
48 |
43 45
|
eqeq12d |
⊢ ( 𝑎 = suc ∪ ( 𝐴 ∪ 𝐵 ) → ( ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ↔ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
49 |
47 48
|
imbi12d |
⊢ ( 𝑎 = suc ∪ ( 𝐴 ∪ 𝐵 ) → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ) ↔ ( ( 𝐹 ‘ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) → ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
50 |
49
|
imbi2d |
⊢ ( 𝑎 = suc ∪ ( 𝐴 ∪ 𝐵 ) → ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ) ) ↔ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) → ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) ) |
51 |
|
in0 |
⊢ ( 𝐴 ∩ ∅ ) = ∅ |
52 |
|
in0 |
⊢ ( 𝐵 ∩ ∅ ) = ∅ |
53 |
51 52
|
eqtr4i |
⊢ ( 𝐴 ∩ ∅ ) = ( 𝐵 ∩ ∅ ) |
54 |
53
|
2a1i |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ ∅ ) ) = ( 𝐹 ‘ ( 𝐵 ∩ ∅ ) ) → ( 𝐴 ∩ ∅ ) = ( 𝐵 ∩ ∅ ) ) ) |
55 |
|
simp13 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) |
56 |
|
3simpa |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) ) |
57 |
|
ackbij1lem2 |
⊢ ( 𝑏 ∈ 𝐴 → ( 𝐴 ∩ suc 𝑏 ) = ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) ) |
58 |
57
|
fveq2d |
⊢ ( 𝑏 ∈ 𝐴 → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) ) ) |
59 |
58
|
3ad2ant2 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) ) ) |
60 |
|
ackbij1lem4 |
⊢ ( 𝑏 ∈ ω → { 𝑏 } ∈ ( 𝒫 ω ∩ Fin ) ) |
61 |
60
|
adantr |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → { 𝑏 } ∈ ( 𝒫 ω ∩ Fin ) ) |
62 |
|
simprl |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) |
63 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝑏 ) ⊆ 𝐴 |
64 |
1
|
ackbij1lem11 |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝑏 ) ⊆ 𝐴 ) → ( 𝐴 ∩ 𝑏 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
65 |
62 63 64
|
sylancl |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( 𝐴 ∩ 𝑏 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
66 |
|
incom |
⊢ ( { 𝑏 } ∩ ( 𝐴 ∩ 𝑏 ) ) = ( ( 𝐴 ∩ 𝑏 ) ∩ { 𝑏 } ) |
67 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝑏 ) ⊆ 𝑏 |
68 |
|
nnord |
⊢ ( 𝑏 ∈ ω → Ord 𝑏 ) |
69 |
|
orddisj |
⊢ ( Ord 𝑏 → ( 𝑏 ∩ { 𝑏 } ) = ∅ ) |
70 |
68 69
|
syl |
⊢ ( 𝑏 ∈ ω → ( 𝑏 ∩ { 𝑏 } ) = ∅ ) |
71 |
70
|
adantr |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( 𝑏 ∩ { 𝑏 } ) = ∅ ) |
72 |
|
ssdisj |
⊢ ( ( ( 𝐴 ∩ 𝑏 ) ⊆ 𝑏 ∧ ( 𝑏 ∩ { 𝑏 } ) = ∅ ) → ( ( 𝐴 ∩ 𝑏 ) ∩ { 𝑏 } ) = ∅ ) |
73 |
67 71 72
|
sylancr |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( ( 𝐴 ∩ 𝑏 ) ∩ { 𝑏 } ) = ∅ ) |
74 |
66 73
|
eqtrid |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( { 𝑏 } ∩ ( 𝐴 ∩ 𝑏 ) ) = ∅ ) |
75 |
1
|
ackbij1lem9 |
⊢ ( ( { 𝑏 } ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝑏 ) ∈ ( 𝒫 ω ∩ Fin ) ∧ ( { 𝑏 } ∩ ( 𝐴 ∩ 𝑏 ) ) = ∅ ) → ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) ) |
76 |
61 65 74 75
|
syl3anc |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) ) |
77 |
76
|
3ad2ant1 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) ) |
78 |
59 77
|
eqtrd |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) ) |
79 |
56 78
|
syl3an1 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) ) |
80 |
|
ackbij1lem2 |
⊢ ( 𝑏 ∈ 𝐵 → ( 𝐵 ∩ suc 𝑏 ) = ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) |
81 |
80
|
fveq2d |
⊢ ( 𝑏 ∈ 𝐵 → ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) ) |
82 |
81
|
3ad2ant3 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) ) |
83 |
|
simprr |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) |
84 |
|
inss1 |
⊢ ( 𝐵 ∩ 𝑏 ) ⊆ 𝐵 |
85 |
1
|
ackbij1lem11 |
⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐵 ∩ 𝑏 ) ⊆ 𝐵 ) → ( 𝐵 ∩ 𝑏 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
86 |
83 84 85
|
sylancl |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( 𝐵 ∩ 𝑏 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
87 |
|
incom |
⊢ ( { 𝑏 } ∩ ( 𝐵 ∩ 𝑏 ) ) = ( ( 𝐵 ∩ 𝑏 ) ∩ { 𝑏 } ) |
88 |
|
inss2 |
⊢ ( 𝐵 ∩ 𝑏 ) ⊆ 𝑏 |
89 |
|
ssdisj |
⊢ ( ( ( 𝐵 ∩ 𝑏 ) ⊆ 𝑏 ∧ ( 𝑏 ∩ { 𝑏 } ) = ∅ ) → ( ( 𝐵 ∩ 𝑏 ) ∩ { 𝑏 } ) = ∅ ) |
90 |
88 71 89
|
sylancr |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( ( 𝐵 ∩ 𝑏 ) ∩ { 𝑏 } ) = ∅ ) |
91 |
87 90
|
eqtrid |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( { 𝑏 } ∩ ( 𝐵 ∩ 𝑏 ) ) = ∅ ) |
92 |
1
|
ackbij1lem9 |
⊢ ( ( { 𝑏 } ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐵 ∩ 𝑏 ) ∈ ( 𝒫 ω ∩ Fin ) ∧ ( { 𝑏 } ∩ ( 𝐵 ∩ 𝑏 ) ) = ∅ ) → ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
93 |
61 86 91 92
|
syl3anc |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
94 |
93
|
3ad2ant1 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
95 |
82 94
|
eqtrd |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
96 |
56 95
|
syl3an1 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
97 |
55 79 96
|
3eqtr3d |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
98 |
1
|
ackbij1lem10 |
⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω |
99 |
98
|
ffvelrni |
⊢ ( { 𝑏 } ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ { 𝑏 } ) ∈ ω ) |
100 |
61 99
|
syl |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( 𝐹 ‘ { 𝑏 } ) ∈ ω ) |
101 |
98
|
ffvelrni |
⊢ ( ( 𝐴 ∩ 𝑏 ) ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ∈ ω ) |
102 |
65 101
|
syl |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ∈ ω ) |
103 |
98
|
ffvelrni |
⊢ ( ( 𝐵 ∩ 𝑏 ) ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ∈ ω ) |
104 |
86 103
|
syl |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ∈ ω ) |
105 |
|
nnacan |
⊢ ( ( ( 𝐹 ‘ { 𝑏 } ) ∈ ω ∧ ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ∈ ω ∧ ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ∈ ω ) → ( ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
106 |
100 102 104 105
|
syl3anc |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
107 |
106
|
3adant3 |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
108 |
107
|
3ad2ant1 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
109 |
97 108
|
mpbid |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) |
110 |
|
uneq2 |
⊢ ( ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) → ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) = ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) |
111 |
110
|
adantl |
⊢ ( ( ( 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) = ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) |
112 |
57
|
ad2antrr |
⊢ ( ( ( 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) ) |
113 |
80
|
ad2antlr |
⊢ ( ( ( 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐵 ∩ suc 𝑏 ) = ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) |
114 |
111 112 113
|
3eqtr4d |
⊢ ( ( ( 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) |
115 |
114
|
ex |
⊢ ( ( 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
116 |
115
|
3adant1 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
117 |
109 116
|
embantd |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
118 |
117
|
3exp |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( 𝑏 ∈ 𝐴 → ( 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) ) |
119 |
|
simp13 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) |
120 |
119
|
eqcomd |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) ) |
121 |
|
simp12r |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) |
122 |
|
simp12l |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) |
123 |
|
simp11 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ω ) |
124 |
|
simp3 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
125 |
|
simp2 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ¬ 𝑏 ∈ 𝐴 ) |
126 |
1
|
ackbij1lem15 |
⊢ ( ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑏 ∈ ω ∧ 𝑏 ∈ 𝐵 ∧ ¬ 𝑏 ∈ 𝐴 ) ) → ¬ ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) ) |
127 |
121 122 123 124 125 126
|
syl23anc |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ¬ ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) ) |
128 |
120 127
|
pm2.21dd |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
129 |
128
|
3exp |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( ¬ 𝑏 ∈ 𝐴 → ( 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) ) |
130 |
118 129
|
pm2.61d |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) |
131 |
|
simp13 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) |
132 |
|
simp12l |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) |
133 |
|
simp12r |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) |
134 |
|
simp11 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ω ) |
135 |
|
simp2 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐴 ) |
136 |
|
simp3 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ¬ 𝑏 ∈ 𝐵 ) |
137 |
1
|
ackbij1lem15 |
⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑏 ∈ ω ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) ) → ¬ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) |
138 |
132 133 134 135 136 137
|
syl23anc |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ¬ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) |
139 |
131 138
|
pm2.21dd |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
140 |
139
|
3exp |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( 𝑏 ∈ 𝐴 → ( ¬ 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) ) |
141 |
|
simp13 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) |
142 |
|
ackbij1lem1 |
⊢ ( ¬ 𝑏 ∈ 𝐴 → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐴 ∩ 𝑏 ) ) |
143 |
142
|
adantr |
⊢ ( ( ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐴 ∩ 𝑏 ) ) |
144 |
143
|
fveq2d |
⊢ ( ( ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
145 |
|
ackbij1lem1 |
⊢ ( ¬ 𝑏 ∈ 𝐵 → ( 𝐵 ∩ suc 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) |
146 |
145
|
adantl |
⊢ ( ( ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( 𝐵 ∩ suc 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) |
147 |
146
|
fveq2d |
⊢ ( ( ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) |
148 |
144 147
|
eqeq12d |
⊢ ( ( ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
149 |
148
|
biimpd |
⊢ ( ( ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) → ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
150 |
149
|
3adant1 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) → ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
151 |
141 150
|
mpd |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) |
152 |
143 146
|
eqeq12d |
⊢ ( ( ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ↔ ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) ) |
153 |
152
|
biimprd |
⊢ ( ( ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
154 |
153
|
3adant1 |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
155 |
151 154
|
embantd |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
156 |
155
|
3exp |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( ¬ 𝑏 ∈ 𝐴 → ( ¬ 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) ) |
157 |
140 156
|
pm2.61d |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( ¬ 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) |
158 |
130 157
|
pm2.61d |
⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
159 |
158
|
3exp |
⊢ ( 𝑏 ∈ ω → ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) ) |
160 |
159
|
com34 |
⊢ ( 𝑏 ∈ ω → ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) ) |
161 |
160
|
a2d |
⊢ ( 𝑏 ∈ ω → ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) ) → ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) ) |
162 |
26 34 42 50 54 161
|
finds |
⊢ ( suc ∪ ( 𝐴 ∪ 𝐵 ) ∈ ω → ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) → ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
163 |
18 162
|
mpcom |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) → ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
164 |
|
omsson |
⊢ ω ⊆ On |
165 |
9 164
|
sstrdi |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ On ) |
166 |
|
onsucuni |
⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ On → ( 𝐴 ∪ 𝐵 ) ⊆ suc ∪ ( 𝐴 ∪ 𝐵 ) ) |
167 |
165 166
|
syl |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ suc ∪ ( 𝐴 ∪ 𝐵 ) ) |
168 |
167
|
unssad |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → 𝐴 ⊆ suc ∪ ( 𝐴 ∪ 𝐵 ) ) |
169 |
|
df-ss |
⊢ ( 𝐴 ⊆ suc ∪ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = 𝐴 ) |
170 |
168 169
|
sylib |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = 𝐴 ) |
171 |
170
|
fveq2d |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐹 ‘ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝐹 ‘ 𝐴 ) ) |
172 |
167
|
unssbd |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → 𝐵 ⊆ suc ∪ ( 𝐴 ∪ 𝐵 ) ) |
173 |
|
df-ss |
⊢ ( 𝐵 ⊆ suc ∪ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = 𝐵 ) |
174 |
172 173
|
sylib |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = 𝐵 ) |
175 |
174
|
fveq2d |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐹 ‘ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝐹 ‘ 𝐵 ) ) |
176 |
171 175
|
eqeq12d |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ↔ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) ) |
177 |
170 174
|
eqeq12d |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) |
178 |
163 176 177
|
3imtr3d |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) → 𝐴 = 𝐵 ) ) |