Step |
Hyp |
Ref |
Expression |
1 |
|
ackbij.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
2 |
|
difss |
⊢ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ⊆ 𝐴 |
3 |
1
|
ackbij1lem11 |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ⊆ 𝐴 ) → ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∈ ( 𝒫 ω ∩ Fin ) ) |
4 |
2 3
|
mpan2 |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∈ ( 𝒫 ω ∩ Fin ) ) |
5 |
|
difss |
⊢ ( ω ∖ 𝐴 ) ⊆ ω |
6 |
|
omsson |
⊢ ω ⊆ On |
7 |
5 6
|
sstri |
⊢ ( ω ∖ 𝐴 ) ⊆ On |
8 |
|
ominf |
⊢ ¬ ω ∈ Fin |
9 |
|
elinel2 |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → 𝐴 ∈ Fin ) |
10 |
|
difinf |
⊢ ( ( ¬ ω ∈ Fin ∧ 𝐴 ∈ Fin ) → ¬ ( ω ∖ 𝐴 ) ∈ Fin ) |
11 |
8 9 10
|
sylancr |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ¬ ( ω ∖ 𝐴 ) ∈ Fin ) |
12 |
|
0fin |
⊢ ∅ ∈ Fin |
13 |
|
eleq1 |
⊢ ( ( ω ∖ 𝐴 ) = ∅ → ( ( ω ∖ 𝐴 ) ∈ Fin ↔ ∅ ∈ Fin ) ) |
14 |
12 13
|
mpbiri |
⊢ ( ( ω ∖ 𝐴 ) = ∅ → ( ω ∖ 𝐴 ) ∈ Fin ) |
15 |
14
|
necon3bi |
⊢ ( ¬ ( ω ∖ 𝐴 ) ∈ Fin → ( ω ∖ 𝐴 ) ≠ ∅ ) |
16 |
11 15
|
syl |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ω ∖ 𝐴 ) ≠ ∅ ) |
17 |
|
onint |
⊢ ( ( ( ω ∖ 𝐴 ) ⊆ On ∧ ( ω ∖ 𝐴 ) ≠ ∅ ) → ∩ ( ω ∖ 𝐴 ) ∈ ( ω ∖ 𝐴 ) ) |
18 |
7 16 17
|
sylancr |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ∩ ( ω ∖ 𝐴 ) ∈ ( ω ∖ 𝐴 ) ) |
19 |
18
|
eldifad |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ∩ ( ω ∖ 𝐴 ) ∈ ω ) |
20 |
|
ackbij1lem4 |
⊢ ( ∩ ( ω ∖ 𝐴 ) ∈ ω → { ∩ ( ω ∖ 𝐴 ) } ∈ ( 𝒫 ω ∩ Fin ) ) |
21 |
19 20
|
syl |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → { ∩ ( ω ∖ 𝐴 ) } ∈ ( 𝒫 ω ∩ Fin ) ) |
22 |
|
ackbij1lem6 |
⊢ ( ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∈ ( 𝒫 ω ∩ Fin ) ∧ { ∩ ( ω ∖ 𝐴 ) } ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) ∈ ( 𝒫 ω ∩ Fin ) ) |
23 |
4 21 22
|
syl2anc |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) ∈ ( 𝒫 ω ∩ Fin ) ) |
24 |
18
|
eldifbd |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ¬ ∩ ( ω ∖ 𝐴 ) ∈ 𝐴 ) |
25 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { ∩ ( ω ∖ 𝐴 ) } ) = ∅ ↔ ¬ ∩ ( ω ∖ 𝐴 ) ∈ 𝐴 ) |
26 |
24 25
|
sylibr |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐴 ∩ { ∩ ( ω ∖ 𝐴 ) } ) = ∅ ) |
27 |
|
ssdisj |
⊢ ( ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ⊆ 𝐴 ∧ ( 𝐴 ∩ { ∩ ( ω ∖ 𝐴 ) } ) = ∅ ) → ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∩ { ∩ ( ω ∖ 𝐴 ) } ) = ∅ ) |
28 |
2 26 27
|
sylancr |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∩ { ∩ ( ω ∖ 𝐴 ) } ) = ∅ ) |
29 |
1
|
ackbij1lem9 |
⊢ ( ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∈ ( 𝒫 ω ∩ Fin ) ∧ { ∩ ( ω ∖ 𝐴 ) } ∈ ( 𝒫 ω ∩ Fin ) ∧ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∩ { ∩ ( ω ∖ 𝐴 ) } ) = ∅ ) → ( 𝐹 ‘ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) ) = ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ { ∩ ( ω ∖ 𝐴 ) } ) ) ) |
30 |
4 21 28 29
|
syl3anc |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) ) = ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ { ∩ ( ω ∖ 𝐴 ) } ) ) ) |
31 |
1
|
ackbij1lem14 |
⊢ ( ∩ ( ω ∖ 𝐴 ) ∈ ω → ( 𝐹 ‘ { ∩ ( ω ∖ 𝐴 ) } ) = suc ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) |
32 |
19 31
|
syl |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ { ∩ ( ω ∖ 𝐴 ) } ) = suc ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ { ∩ ( ω ∖ 𝐴 ) } ) ) = ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o suc ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) ) |
34 |
1
|
ackbij1lem10 |
⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω |
35 |
34
|
ffvelrni |
⊢ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) ∈ ω ) |
36 |
4 35
|
syl |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) ∈ ω ) |
37 |
|
ackbij1lem3 |
⊢ ( ∩ ( ω ∖ 𝐴 ) ∈ ω → ∩ ( ω ∖ 𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
38 |
19 37
|
syl |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ∩ ( ω ∖ 𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
39 |
34
|
ffvelrni |
⊢ ( ∩ ( ω ∖ 𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ∈ ω ) |
40 |
38 39
|
syl |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ∈ ω ) |
41 |
|
nnasuc |
⊢ ( ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) ∈ ω ∧ ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ∈ ω ) → ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o suc ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) = suc ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) ) |
42 |
36 40 41
|
syl2anc |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o suc ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) = suc ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) ) |
43 |
|
disjdifr |
⊢ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∩ ∩ ( ω ∖ 𝐴 ) ) = ∅ |
44 |
43
|
a1i |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∩ ∩ ( ω ∖ 𝐴 ) ) = ∅ ) |
45 |
1
|
ackbij1lem9 |
⊢ ( ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∈ ( 𝒫 ω ∩ Fin ) ∧ ∩ ( ω ∖ 𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) ∧ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∩ ∩ ( ω ∖ 𝐴 ) ) = ∅ ) → ( 𝐹 ‘ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ ∩ ( ω ∖ 𝐴 ) ) ) = ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) ) |
46 |
4 38 44 45
|
syl3anc |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ ∩ ( ω ∖ 𝐴 ) ) ) = ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) ) |
47 |
|
uncom |
⊢ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ ∩ ( ω ∖ 𝐴 ) ) = ( ∩ ( ω ∖ 𝐴 ) ∪ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) |
48 |
|
onnmin |
⊢ ( ( ( ω ∖ 𝐴 ) ⊆ On ∧ 𝑎 ∈ ( ω ∖ 𝐴 ) ) → ¬ 𝑎 ∈ ∩ ( ω ∖ 𝐴 ) ) |
49 |
7 48
|
mpan |
⊢ ( 𝑎 ∈ ( ω ∖ 𝐴 ) → ¬ 𝑎 ∈ ∩ ( ω ∖ 𝐴 ) ) |
50 |
49
|
con2i |
⊢ ( 𝑎 ∈ ∩ ( ω ∖ 𝐴 ) → ¬ 𝑎 ∈ ( ω ∖ 𝐴 ) ) |
51 |
50
|
adantl |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑎 ∈ ∩ ( ω ∖ 𝐴 ) ) → ¬ 𝑎 ∈ ( ω ∖ 𝐴 ) ) |
52 |
|
ordom |
⊢ Ord ω |
53 |
|
ordelss |
⊢ ( ( Ord ω ∧ ∩ ( ω ∖ 𝐴 ) ∈ ω ) → ∩ ( ω ∖ 𝐴 ) ⊆ ω ) |
54 |
52 19 53
|
sylancr |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ∩ ( ω ∖ 𝐴 ) ⊆ ω ) |
55 |
54
|
sselda |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑎 ∈ ∩ ( ω ∖ 𝐴 ) ) → 𝑎 ∈ ω ) |
56 |
|
eldif |
⊢ ( 𝑎 ∈ ( ω ∖ 𝐴 ) ↔ ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ 𝐴 ) ) |
57 |
56
|
simplbi2 |
⊢ ( 𝑎 ∈ ω → ( ¬ 𝑎 ∈ 𝐴 → 𝑎 ∈ ( ω ∖ 𝐴 ) ) ) |
58 |
57
|
orrd |
⊢ ( 𝑎 ∈ ω → ( 𝑎 ∈ 𝐴 ∨ 𝑎 ∈ ( ω ∖ 𝐴 ) ) ) |
59 |
58
|
orcomd |
⊢ ( 𝑎 ∈ ω → ( 𝑎 ∈ ( ω ∖ 𝐴 ) ∨ 𝑎 ∈ 𝐴 ) ) |
60 |
55 59
|
syl |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑎 ∈ ∩ ( ω ∖ 𝐴 ) ) → ( 𝑎 ∈ ( ω ∖ 𝐴 ) ∨ 𝑎 ∈ 𝐴 ) ) |
61 |
|
orel1 |
⊢ ( ¬ 𝑎 ∈ ( ω ∖ 𝐴 ) → ( ( 𝑎 ∈ ( ω ∖ 𝐴 ) ∨ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) ) |
62 |
51 60 61
|
sylc |
⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑎 ∈ ∩ ( ω ∖ 𝐴 ) ) → 𝑎 ∈ 𝐴 ) |
63 |
62
|
ex |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝑎 ∈ ∩ ( ω ∖ 𝐴 ) → 𝑎 ∈ 𝐴 ) ) |
64 |
63
|
ssrdv |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ∩ ( ω ∖ 𝐴 ) ⊆ 𝐴 ) |
65 |
|
undif |
⊢ ( ∩ ( ω ∖ 𝐴 ) ⊆ 𝐴 ↔ ( ∩ ( ω ∖ 𝐴 ) ∪ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) = 𝐴 ) |
66 |
64 65
|
sylib |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ∩ ( ω ∖ 𝐴 ) ∪ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) = 𝐴 ) |
67 |
47 66
|
eqtrid |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ ∩ ( ω ∖ 𝐴 ) ) = 𝐴 ) |
68 |
67
|
fveq2d |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ ∩ ( ω ∖ 𝐴 ) ) ) = ( 𝐹 ‘ 𝐴 ) ) |
69 |
46 68
|
eqtr3d |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) = ( 𝐹 ‘ 𝐴 ) ) |
70 |
|
suceq |
⊢ ( ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) = ( 𝐹 ‘ 𝐴 ) → suc ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) = suc ( 𝐹 ‘ 𝐴 ) ) |
71 |
69 70
|
syl |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → suc ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) = suc ( 𝐹 ‘ 𝐴 ) ) |
72 |
42 71
|
eqtrd |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o suc ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) = suc ( 𝐹 ‘ 𝐴 ) ) |
73 |
30 33 72
|
3eqtrd |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) ) = suc ( 𝐹 ‘ 𝐴 ) ) |
74 |
|
fveqeq2 |
⊢ ( 𝑏 = ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) → ( ( 𝐹 ‘ 𝑏 ) = suc ( 𝐹 ‘ 𝐴 ) ↔ ( 𝐹 ‘ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) ) = suc ( 𝐹 ‘ 𝐴 ) ) ) |
75 |
74
|
rspcev |
⊢ ( ( ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐹 ‘ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) ) = suc ( 𝐹 ‘ 𝐴 ) ) → ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc ( 𝐹 ‘ 𝐴 ) ) |
76 |
23 73 75
|
syl2anc |
⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc ( 𝐹 ‘ 𝐴 ) ) |