| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackbij.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 𝒫  ω  ∩  Fin )  ↦  ( card ‘ ∪  𝑦  ∈  𝑥 ( { 𝑦 }  ×  𝒫  𝑦 ) ) ) | 
						
							| 2 |  | difss | ⊢ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ⊆  𝐴 | 
						
							| 3 | 1 | ackbij1lem11 | ⊢ ( ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  ∧  ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ⊆  𝐴 )  →  ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∈  ( 𝒫  ω  ∩  Fin ) ) | 
						
							| 4 | 2 3 | mpan2 | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∈  ( 𝒫  ω  ∩  Fin ) ) | 
						
							| 5 |  | difss | ⊢ ( ω  ∖  𝐴 )  ⊆  ω | 
						
							| 6 |  | omsson | ⊢ ω  ⊆  On | 
						
							| 7 | 5 6 | sstri | ⊢ ( ω  ∖  𝐴 )  ⊆  On | 
						
							| 8 |  | ominf | ⊢ ¬  ω  ∈  Fin | 
						
							| 9 |  | elinel2 | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  𝐴  ∈  Fin ) | 
						
							| 10 |  | difinf | ⊢ ( ( ¬  ω  ∈  Fin  ∧  𝐴  ∈  Fin )  →  ¬  ( ω  ∖  𝐴 )  ∈  Fin ) | 
						
							| 11 | 8 9 10 | sylancr | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ¬  ( ω  ∖  𝐴 )  ∈  Fin ) | 
						
							| 12 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 13 |  | eleq1 | ⊢ ( ( ω  ∖  𝐴 )  =  ∅  →  ( ( ω  ∖  𝐴 )  ∈  Fin  ↔  ∅  ∈  Fin ) ) | 
						
							| 14 | 12 13 | mpbiri | ⊢ ( ( ω  ∖  𝐴 )  =  ∅  →  ( ω  ∖  𝐴 )  ∈  Fin ) | 
						
							| 15 | 14 | necon3bi | ⊢ ( ¬  ( ω  ∖  𝐴 )  ∈  Fin  →  ( ω  ∖  𝐴 )  ≠  ∅ ) | 
						
							| 16 | 11 15 | syl | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( ω  ∖  𝐴 )  ≠  ∅ ) | 
						
							| 17 |  | onint | ⊢ ( ( ( ω  ∖  𝐴 )  ⊆  On  ∧  ( ω  ∖  𝐴 )  ≠  ∅ )  →  ∩  ( ω  ∖  𝐴 )  ∈  ( ω  ∖  𝐴 ) ) | 
						
							| 18 | 7 16 17 | sylancr | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ∩  ( ω  ∖  𝐴 )  ∈  ( ω  ∖  𝐴 ) ) | 
						
							| 19 | 18 | eldifad | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ∩  ( ω  ∖  𝐴 )  ∈  ω ) | 
						
							| 20 |  | ackbij1lem4 | ⊢ ( ∩  ( ω  ∖  𝐴 )  ∈  ω  →  { ∩  ( ω  ∖  𝐴 ) }  ∈  ( 𝒫  ω  ∩  Fin ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  { ∩  ( ω  ∖  𝐴 ) }  ∈  ( 𝒫  ω  ∩  Fin ) ) | 
						
							| 22 |  | ackbij1lem6 | ⊢ ( ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∈  ( 𝒫  ω  ∩  Fin )  ∧  { ∩  ( ω  ∖  𝐴 ) }  ∈  ( 𝒫  ω  ∩  Fin ) )  →  ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∪  { ∩  ( ω  ∖  𝐴 ) } )  ∈  ( 𝒫  ω  ∩  Fin ) ) | 
						
							| 23 | 4 21 22 | syl2anc | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∪  { ∩  ( ω  ∖  𝐴 ) } )  ∈  ( 𝒫  ω  ∩  Fin ) ) | 
						
							| 24 | 18 | eldifbd | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ¬  ∩  ( ω  ∖  𝐴 )  ∈  𝐴 ) | 
						
							| 25 |  | disjsn | ⊢ ( ( 𝐴  ∩  { ∩  ( ω  ∖  𝐴 ) } )  =  ∅  ↔  ¬  ∩  ( ω  ∖  𝐴 )  ∈  𝐴 ) | 
						
							| 26 | 24 25 | sylibr | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( 𝐴  ∩  { ∩  ( ω  ∖  𝐴 ) } )  =  ∅ ) | 
						
							| 27 |  | ssdisj | ⊢ ( ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ⊆  𝐴  ∧  ( 𝐴  ∩  { ∩  ( ω  ∖  𝐴 ) } )  =  ∅ )  →  ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∩  { ∩  ( ω  ∖  𝐴 ) } )  =  ∅ ) | 
						
							| 28 | 2 26 27 | sylancr | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∩  { ∩  ( ω  ∖  𝐴 ) } )  =  ∅ ) | 
						
							| 29 | 1 | ackbij1lem9 | ⊢ ( ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∈  ( 𝒫  ω  ∩  Fin )  ∧  { ∩  ( ω  ∖  𝐴 ) }  ∈  ( 𝒫  ω  ∩  Fin )  ∧  ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∩  { ∩  ( ω  ∖  𝐴 ) } )  =  ∅ )  →  ( 𝐹 ‘ ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∪  { ∩  ( ω  ∖  𝐴 ) } ) )  =  ( ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  +o  ( 𝐹 ‘ { ∩  ( ω  ∖  𝐴 ) } ) ) ) | 
						
							| 30 | 4 21 28 29 | syl3anc | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( 𝐹 ‘ ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∪  { ∩  ( ω  ∖  𝐴 ) } ) )  =  ( ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  +o  ( 𝐹 ‘ { ∩  ( ω  ∖  𝐴 ) } ) ) ) | 
						
							| 31 | 1 | ackbij1lem14 | ⊢ ( ∩  ( ω  ∖  𝐴 )  ∈  ω  →  ( 𝐹 ‘ { ∩  ( ω  ∖  𝐴 ) } )  =  suc  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) ) ) | 
						
							| 32 | 19 31 | syl | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( 𝐹 ‘ { ∩  ( ω  ∖  𝐴 ) } )  =  suc  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) ) ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  +o  ( 𝐹 ‘ { ∩  ( ω  ∖  𝐴 ) } ) )  =  ( ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  +o  suc  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) ) ) ) | 
						
							| 34 | 1 | ackbij1lem10 | ⊢ 𝐹 : ( 𝒫  ω  ∩  Fin ) ⟶ ω | 
						
							| 35 | 34 | ffvelcdmi | ⊢ ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∈  ( 𝒫  ω  ∩  Fin )  →  ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  ∈  ω ) | 
						
							| 36 | 4 35 | syl | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  ∈  ω ) | 
						
							| 37 |  | ackbij1lem3 | ⊢ ( ∩  ( ω  ∖  𝐴 )  ∈  ω  →  ∩  ( ω  ∖  𝐴 )  ∈  ( 𝒫  ω  ∩  Fin ) ) | 
						
							| 38 | 19 37 | syl | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ∩  ( ω  ∖  𝐴 )  ∈  ( 𝒫  ω  ∩  Fin ) ) | 
						
							| 39 | 34 | ffvelcdmi | ⊢ ( ∩  ( ω  ∖  𝐴 )  ∈  ( 𝒫  ω  ∩  Fin )  →  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) )  ∈  ω ) | 
						
							| 40 | 38 39 | syl | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) )  ∈  ω ) | 
						
							| 41 |  | nnasuc | ⊢ ( ( ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  ∈  ω  ∧  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) )  ∈  ω )  →  ( ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  +o  suc  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) ) )  =  suc  ( ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  +o  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) ) ) ) | 
						
							| 42 | 36 40 41 | syl2anc | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  +o  suc  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) ) )  =  suc  ( ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  +o  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) ) ) ) | 
						
							| 43 |  | disjdifr | ⊢ ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∩  ∩  ( ω  ∖  𝐴 ) )  =  ∅ | 
						
							| 44 | 43 | a1i | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∩  ∩  ( ω  ∖  𝐴 ) )  =  ∅ ) | 
						
							| 45 | 1 | ackbij1lem9 | ⊢ ( ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∈  ( 𝒫  ω  ∩  Fin )  ∧  ∩  ( ω  ∖  𝐴 )  ∈  ( 𝒫  ω  ∩  Fin )  ∧  ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∩  ∩  ( ω  ∖  𝐴 ) )  =  ∅ )  →  ( 𝐹 ‘ ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∪  ∩  ( ω  ∖  𝐴 ) ) )  =  ( ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  +o  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) ) ) ) | 
						
							| 46 | 4 38 44 45 | syl3anc | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( 𝐹 ‘ ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∪  ∩  ( ω  ∖  𝐴 ) ) )  =  ( ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  +o  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) ) ) ) | 
						
							| 47 |  | uncom | ⊢ ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∪  ∩  ( ω  ∖  𝐴 ) )  =  ( ∩  ( ω  ∖  𝐴 )  ∪  ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) ) | 
						
							| 48 |  | onnmin | ⊢ ( ( ( ω  ∖  𝐴 )  ⊆  On  ∧  𝑎  ∈  ( ω  ∖  𝐴 ) )  →  ¬  𝑎  ∈  ∩  ( ω  ∖  𝐴 ) ) | 
						
							| 49 | 7 48 | mpan | ⊢ ( 𝑎  ∈  ( ω  ∖  𝐴 )  →  ¬  𝑎  ∈  ∩  ( ω  ∖  𝐴 ) ) | 
						
							| 50 | 49 | con2i | ⊢ ( 𝑎  ∈  ∩  ( ω  ∖  𝐴 )  →  ¬  𝑎  ∈  ( ω  ∖  𝐴 ) ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  ∧  𝑎  ∈  ∩  ( ω  ∖  𝐴 ) )  →  ¬  𝑎  ∈  ( ω  ∖  𝐴 ) ) | 
						
							| 52 |  | ordom | ⊢ Ord  ω | 
						
							| 53 |  | ordelss | ⊢ ( ( Ord  ω  ∧  ∩  ( ω  ∖  𝐴 )  ∈  ω )  →  ∩  ( ω  ∖  𝐴 )  ⊆  ω ) | 
						
							| 54 | 52 19 53 | sylancr | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ∩  ( ω  ∖  𝐴 )  ⊆  ω ) | 
						
							| 55 | 54 | sselda | ⊢ ( ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  ∧  𝑎  ∈  ∩  ( ω  ∖  𝐴 ) )  →  𝑎  ∈  ω ) | 
						
							| 56 |  | eldif | ⊢ ( 𝑎  ∈  ( ω  ∖  𝐴 )  ↔  ( 𝑎  ∈  ω  ∧  ¬  𝑎  ∈  𝐴 ) ) | 
						
							| 57 | 56 | simplbi2 | ⊢ ( 𝑎  ∈  ω  →  ( ¬  𝑎  ∈  𝐴  →  𝑎  ∈  ( ω  ∖  𝐴 ) ) ) | 
						
							| 58 | 57 | orrd | ⊢ ( 𝑎  ∈  ω  →  ( 𝑎  ∈  𝐴  ∨  𝑎  ∈  ( ω  ∖  𝐴 ) ) ) | 
						
							| 59 | 58 | orcomd | ⊢ ( 𝑎  ∈  ω  →  ( 𝑎  ∈  ( ω  ∖  𝐴 )  ∨  𝑎  ∈  𝐴 ) ) | 
						
							| 60 | 55 59 | syl | ⊢ ( ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  ∧  𝑎  ∈  ∩  ( ω  ∖  𝐴 ) )  →  ( 𝑎  ∈  ( ω  ∖  𝐴 )  ∨  𝑎  ∈  𝐴 ) ) | 
						
							| 61 |  | orel1 | ⊢ ( ¬  𝑎  ∈  ( ω  ∖  𝐴 )  →  ( ( 𝑎  ∈  ( ω  ∖  𝐴 )  ∨  𝑎  ∈  𝐴 )  →  𝑎  ∈  𝐴 ) ) | 
						
							| 62 | 51 60 61 | sylc | ⊢ ( ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  ∧  𝑎  ∈  ∩  ( ω  ∖  𝐴 ) )  →  𝑎  ∈  𝐴 ) | 
						
							| 63 | 62 | ex | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( 𝑎  ∈  ∩  ( ω  ∖  𝐴 )  →  𝑎  ∈  𝐴 ) ) | 
						
							| 64 | 63 | ssrdv | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ∩  ( ω  ∖  𝐴 )  ⊆  𝐴 ) | 
						
							| 65 |  | undif | ⊢ ( ∩  ( ω  ∖  𝐴 )  ⊆  𝐴  ↔  ( ∩  ( ω  ∖  𝐴 )  ∪  ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  =  𝐴 ) | 
						
							| 66 | 64 65 | sylib | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( ∩  ( ω  ∖  𝐴 )  ∪  ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  =  𝐴 ) | 
						
							| 67 | 47 66 | eqtrid | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∪  ∩  ( ω  ∖  𝐴 ) )  =  𝐴 ) | 
						
							| 68 | 67 | fveq2d | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( 𝐹 ‘ ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∪  ∩  ( ω  ∖  𝐴 ) ) )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 69 | 46 68 | eqtr3d | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  +o  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) ) )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 70 |  | suceq | ⊢ ( ( ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  +o  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) ) )  =  ( 𝐹 ‘ 𝐴 )  →  suc  ( ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  +o  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) ) )  =  suc  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 71 | 69 70 | syl | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  suc  ( ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  +o  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) ) )  =  suc  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 72 | 42 71 | eqtrd | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( ( 𝐹 ‘ ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) ) )  +o  suc  ( 𝐹 ‘ ∩  ( ω  ∖  𝐴 ) ) )  =  suc  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 73 | 30 33 72 | 3eqtrd | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ( 𝐹 ‘ ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∪  { ∩  ( ω  ∖  𝐴 ) } ) )  =  suc  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 74 |  | fveqeq2 | ⊢ ( 𝑏  =  ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∪  { ∩  ( ω  ∖  𝐴 ) } )  →  ( ( 𝐹 ‘ 𝑏 )  =  suc  ( 𝐹 ‘ 𝐴 )  ↔  ( 𝐹 ‘ ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∪  { ∩  ( ω  ∖  𝐴 ) } ) )  =  suc  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 75 | 74 | rspcev | ⊢ ( ( ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∪  { ∩  ( ω  ∖  𝐴 ) } )  ∈  ( 𝒫  ω  ∩  Fin )  ∧  ( 𝐹 ‘ ( ( 𝐴  ∖  ∩  ( ω  ∖  𝐴 ) )  ∪  { ∩  ( ω  ∖  𝐴 ) } ) )  =  suc  ( 𝐹 ‘ 𝐴 ) )  →  ∃ 𝑏  ∈  ( 𝒫  ω  ∩  Fin ) ( 𝐹 ‘ 𝑏 )  =  suc  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 76 | 23 73 75 | syl2anc | ⊢ ( 𝐴  ∈  ( 𝒫  ω  ∩  Fin )  →  ∃ 𝑏  ∈  ( 𝒫  ω  ∩  Fin ) ( 𝐹 ‘ 𝑏 )  =  suc  ( 𝐹 ‘ 𝐴 ) ) |