Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackbij1lem3 | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ordom | ⊢ Ord ω | |
| 2 | ordelss | ⊢ ( ( Ord ω ∧ 𝐴 ∈ ω ) → 𝐴 ⊆ ω ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ω → 𝐴 ⊆ ω ) | 
| 4 | elpwg | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ∈ 𝒫 ω ↔ 𝐴 ⊆ ω ) ) | |
| 5 | 3 4 | mpbird | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ 𝒫 ω ) | 
| 6 | nnfi | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) | |
| 7 | 5 6 | elind | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) |