Metamath Proof Explorer


Theorem ackbij1lem3

Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Assertion ackbij1lem3 ( 𝐴 ∈ ω → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) )

Proof

Step Hyp Ref Expression
1 ordom Ord ω
2 ordelss ( ( Ord ω ∧ 𝐴 ∈ ω ) → 𝐴 ⊆ ω )
3 1 2 mpan ( 𝐴 ∈ ω → 𝐴 ⊆ ω )
4 elpwg ( 𝐴 ∈ ω → ( 𝐴 ∈ 𝒫 ω ↔ 𝐴 ⊆ ω ) )
5 3 4 mpbird ( 𝐴 ∈ ω → 𝐴 ∈ 𝒫 ω )
6 nnfi ( 𝐴 ∈ ω → 𝐴 ∈ Fin )
7 5 6 elind ( 𝐴 ∈ ω → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) )