Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 21-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| Assertion | ackbij1lem7 | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ 𝐴 ) = ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 2 | iuneq1 | ⊢ ( 𝑥 = 𝐴 → ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) = ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) = ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 4 | fvex | ⊢ ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ∈ V | |
| 5 | 3 1 4 | fvmpt | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ 𝐴 ) = ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |