Metamath Proof Explorer


Theorem ackbij1lem7

Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 21-Nov-2014)

Ref Expression
Hypothesis ackbij.f 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ 𝑦𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) )
Assertion ackbij1lem7 ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹𝐴 ) = ( card ‘ 𝑦𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 ackbij.f 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ 𝑦𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) )
2 iuneq1 ( 𝑥 = 𝐴 𝑦𝑥 ( { 𝑦 } × 𝒫 𝑦 ) = 𝑦𝐴 ( { 𝑦 } × 𝒫 𝑦 ) )
3 2 fveq2d ( 𝑥 = 𝐴 → ( card ‘ 𝑦𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) = ( card ‘ 𝑦𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) )
4 fvex ( card ‘ 𝑦𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ∈ V
5 3 1 4 fvmpt ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹𝐴 ) = ( card ‘ 𝑦𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) )