| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackbij.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 2 |
|
sneq |
⊢ ( 𝑎 = 𝐴 → { 𝑎 } = { 𝐴 } ) |
| 3 |
2
|
fveq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝐹 ‘ { 𝑎 } ) = ( 𝐹 ‘ { 𝐴 } ) ) |
| 4 |
|
pweq |
⊢ ( 𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴 ) |
| 5 |
4
|
fveq2d |
⊢ ( 𝑎 = 𝐴 → ( card ‘ 𝒫 𝑎 ) = ( card ‘ 𝒫 𝐴 ) ) |
| 6 |
3 5
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝐹 ‘ { 𝑎 } ) = ( card ‘ 𝒫 𝑎 ) ↔ ( 𝐹 ‘ { 𝐴 } ) = ( card ‘ 𝒫 𝐴 ) ) ) |
| 7 |
|
ackbij1lem4 |
⊢ ( 𝑎 ∈ ω → { 𝑎 } ∈ ( 𝒫 ω ∩ Fin ) ) |
| 8 |
1
|
ackbij1lem7 |
⊢ ( { 𝑎 } ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ { 𝑎 } ) = ( card ‘ ∪ 𝑦 ∈ { 𝑎 } ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝑎 ∈ ω → ( 𝐹 ‘ { 𝑎 } ) = ( card ‘ ∪ 𝑦 ∈ { 𝑎 } ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 10 |
|
vex |
⊢ 𝑎 ∈ V |
| 11 |
|
sneq |
⊢ ( 𝑦 = 𝑎 → { 𝑦 } = { 𝑎 } ) |
| 12 |
|
pweq |
⊢ ( 𝑦 = 𝑎 → 𝒫 𝑦 = 𝒫 𝑎 ) |
| 13 |
11 12
|
xpeq12d |
⊢ ( 𝑦 = 𝑎 → ( { 𝑦 } × 𝒫 𝑦 ) = ( { 𝑎 } × 𝒫 𝑎 ) ) |
| 14 |
10 13
|
iunxsn |
⊢ ∪ 𝑦 ∈ { 𝑎 } ( { 𝑦 } × 𝒫 𝑦 ) = ( { 𝑎 } × 𝒫 𝑎 ) |
| 15 |
14
|
fveq2i |
⊢ ( card ‘ ∪ 𝑦 ∈ { 𝑎 } ( { 𝑦 } × 𝒫 𝑦 ) ) = ( card ‘ ( { 𝑎 } × 𝒫 𝑎 ) ) |
| 16 |
|
vpwex |
⊢ 𝒫 𝑎 ∈ V |
| 17 |
|
xpsnen2g |
⊢ ( ( 𝑎 ∈ V ∧ 𝒫 𝑎 ∈ V ) → ( { 𝑎 } × 𝒫 𝑎 ) ≈ 𝒫 𝑎 ) |
| 18 |
10 16 17
|
mp2an |
⊢ ( { 𝑎 } × 𝒫 𝑎 ) ≈ 𝒫 𝑎 |
| 19 |
|
carden2b |
⊢ ( ( { 𝑎 } × 𝒫 𝑎 ) ≈ 𝒫 𝑎 → ( card ‘ ( { 𝑎 } × 𝒫 𝑎 ) ) = ( card ‘ 𝒫 𝑎 ) ) |
| 20 |
18 19
|
ax-mp |
⊢ ( card ‘ ( { 𝑎 } × 𝒫 𝑎 ) ) = ( card ‘ 𝒫 𝑎 ) |
| 21 |
15 20
|
eqtri |
⊢ ( card ‘ ∪ 𝑦 ∈ { 𝑎 } ( { 𝑦 } × 𝒫 𝑦 ) ) = ( card ‘ 𝒫 𝑎 ) |
| 22 |
9 21
|
eqtrdi |
⊢ ( 𝑎 ∈ ω → ( 𝐹 ‘ { 𝑎 } ) = ( card ‘ 𝒫 𝑎 ) ) |
| 23 |
6 22
|
vtoclga |
⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ { 𝐴 } ) = ( card ‘ 𝒫 𝐴 ) ) |