Metamath Proof Explorer


Theorem ackbij1lem8

Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 19-Nov-2014)

Ref Expression
Hypothesis ackbij.f 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ 𝑦𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) )
Assertion ackbij1lem8 ( 𝐴 ∈ ω → ( 𝐹 ‘ { 𝐴 } ) = ( card ‘ 𝒫 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ackbij.f 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ 𝑦𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) )
2 sneq ( 𝑎 = 𝐴 → { 𝑎 } = { 𝐴 } )
3 2 fveq2d ( 𝑎 = 𝐴 → ( 𝐹 ‘ { 𝑎 } ) = ( 𝐹 ‘ { 𝐴 } ) )
4 pweq ( 𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴 )
5 4 fveq2d ( 𝑎 = 𝐴 → ( card ‘ 𝒫 𝑎 ) = ( card ‘ 𝒫 𝐴 ) )
6 3 5 eqeq12d ( 𝑎 = 𝐴 → ( ( 𝐹 ‘ { 𝑎 } ) = ( card ‘ 𝒫 𝑎 ) ↔ ( 𝐹 ‘ { 𝐴 } ) = ( card ‘ 𝒫 𝐴 ) ) )
7 ackbij1lem4 ( 𝑎 ∈ ω → { 𝑎 } ∈ ( 𝒫 ω ∩ Fin ) )
8 1 ackbij1lem7 ( { 𝑎 } ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ { 𝑎 } ) = ( card ‘ 𝑦 ∈ { 𝑎 } ( { 𝑦 } × 𝒫 𝑦 ) ) )
9 7 8 syl ( 𝑎 ∈ ω → ( 𝐹 ‘ { 𝑎 } ) = ( card ‘ 𝑦 ∈ { 𝑎 } ( { 𝑦 } × 𝒫 𝑦 ) ) )
10 vex 𝑎 ∈ V
11 sneq ( 𝑦 = 𝑎 → { 𝑦 } = { 𝑎 } )
12 pweq ( 𝑦 = 𝑎 → 𝒫 𝑦 = 𝒫 𝑎 )
13 11 12 xpeq12d ( 𝑦 = 𝑎 → ( { 𝑦 } × 𝒫 𝑦 ) = ( { 𝑎 } × 𝒫 𝑎 ) )
14 10 13 iunxsn 𝑦 ∈ { 𝑎 } ( { 𝑦 } × 𝒫 𝑦 ) = ( { 𝑎 } × 𝒫 𝑎 )
15 14 fveq2i ( card ‘ 𝑦 ∈ { 𝑎 } ( { 𝑦 } × 𝒫 𝑦 ) ) = ( card ‘ ( { 𝑎 } × 𝒫 𝑎 ) )
16 vpwex 𝒫 𝑎 ∈ V
17 xpsnen2g ( ( 𝑎 ∈ V ∧ 𝒫 𝑎 ∈ V ) → ( { 𝑎 } × 𝒫 𝑎 ) ≈ 𝒫 𝑎 )
18 10 16 17 mp2an ( { 𝑎 } × 𝒫 𝑎 ) ≈ 𝒫 𝑎
19 carden2b ( ( { 𝑎 } × 𝒫 𝑎 ) ≈ 𝒫 𝑎 → ( card ‘ ( { 𝑎 } × 𝒫 𝑎 ) ) = ( card ‘ 𝒫 𝑎 ) )
20 18 19 ax-mp ( card ‘ ( { 𝑎 } × 𝒫 𝑎 ) ) = ( card ‘ 𝒫 𝑎 )
21 15 20 eqtri ( card ‘ 𝑦 ∈ { 𝑎 } ( { 𝑦 } × 𝒫 𝑦 ) ) = ( card ‘ 𝒫 𝑎 )
22 9 21 eqtrdi ( 𝑎 ∈ ω → ( 𝐹 ‘ { 𝑎 } ) = ( card ‘ 𝒫 𝑎 ) )
23 6 22 vtoclga ( 𝐴 ∈ ω → ( 𝐹 ‘ { 𝐴 } ) = ( card ‘ 𝒫 𝐴 ) )