Step |
Hyp |
Ref |
Expression |
1 |
|
ackbij.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
2 |
|
ackbij.g |
⊢ 𝐺 = ( 𝑥 ∈ V ↦ ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) ) |
3 |
|
ackbij.h |
⊢ 𝐻 = ∪ ( rec ( 𝐺 , ∅ ) “ ω ) |
4 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) |
5 |
|
fvex |
⊢ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ∈ V |
6 |
4 5
|
f1iun |
⊢ ( ∀ 𝑎 ∈ ω ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ∧ ∀ 𝑏 ∈ ω ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∨ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) → ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ) |
7 |
1 2
|
ackbij2lem2 |
⊢ ( 𝑎 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ) |
8 |
|
f1of1 |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑎 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ) |
10 |
|
ordom |
⊢ Ord ω |
11 |
|
r1fin |
⊢ ( 𝑎 ∈ ω → ( 𝑅1 ‘ 𝑎 ) ∈ Fin ) |
12 |
|
ficardom |
⊢ ( ( 𝑅1 ‘ 𝑎 ) ∈ Fin → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ∈ ω ) |
13 |
11 12
|
syl |
⊢ ( 𝑎 ∈ ω → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ∈ ω ) |
14 |
|
ordelss |
⊢ ( ( Ord ω ∧ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ∈ ω ) → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ⊆ ω ) |
15 |
10 13 14
|
sylancr |
⊢ ( 𝑎 ∈ ω → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ⊆ ω ) |
16 |
|
f1ss |
⊢ ( ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ∧ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ⊆ ω ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ) |
17 |
9 15 16
|
syl2anc |
⊢ ( 𝑎 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ) |
18 |
|
nnord |
⊢ ( 𝑎 ∈ ω → Ord 𝑎 ) |
19 |
|
nnord |
⊢ ( 𝑏 ∈ ω → Ord 𝑏 ) |
20 |
|
ordtri2or2 |
⊢ ( ( Ord 𝑎 ∧ Ord 𝑏 ) → ( 𝑎 ⊆ 𝑏 ∨ 𝑏 ⊆ 𝑎 ) ) |
21 |
18 19 20
|
syl2an |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( 𝑎 ⊆ 𝑏 ∨ 𝑏 ⊆ 𝑎 ) ) |
22 |
1 2
|
ackbij2lem4 |
⊢ ( ( ( 𝑏 ∈ ω ∧ 𝑎 ∈ ω ) ∧ 𝑎 ⊆ 𝑏 ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) |
23 |
22
|
ex |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑎 ∈ ω ) → ( 𝑎 ⊆ 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ) |
24 |
23
|
ancoms |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( 𝑎 ⊆ 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ) |
25 |
1 2
|
ackbij2lem4 |
⊢ ( ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ 𝑏 ⊆ 𝑎 ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) |
26 |
25
|
ex |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( 𝑏 ⊆ 𝑎 → ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) |
27 |
24 26
|
orim12d |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ( 𝑎 ⊆ 𝑏 ∨ 𝑏 ⊆ 𝑎 ) → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∨ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) ) |
28 |
21 27
|
mpd |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∨ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) |
29 |
28
|
ralrimiva |
⊢ ( 𝑎 ∈ ω → ∀ 𝑏 ∈ ω ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∨ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) |
30 |
17 29
|
jca |
⊢ ( 𝑎 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ∧ ∀ 𝑏 ∈ ω ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∨ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) ) |
31 |
6 30
|
mprg |
⊢ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) –1-1→ ω |
32 |
|
rdgfun |
⊢ Fun rec ( 𝐺 , ∅ ) |
33 |
|
funiunfv |
⊢ ( Fun rec ( 𝐺 , ∅ ) → ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ∪ ( rec ( 𝐺 , ∅ ) “ ω ) ) |
34 |
33
|
eqcomd |
⊢ ( Fun rec ( 𝐺 , ∅ ) → ∪ ( rec ( 𝐺 , ∅ ) “ ω ) = ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) |
35 |
|
f1eq1 |
⊢ ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) = ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) → ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ↔ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ) ) |
36 |
32 34 35
|
mp2b |
⊢ ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ↔ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ) |
37 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
38 |
37
|
simpli |
⊢ Fun 𝑅1 |
39 |
|
funiunfv |
⊢ ( Fun 𝑅1 → ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) = ∪ ( 𝑅1 “ ω ) ) |
40 |
|
f1eq2 |
⊢ ( ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) = ∪ ( 𝑅1 “ ω ) → ( ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ↔ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ) ) |
41 |
38 39 40
|
mp2b |
⊢ ( ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ↔ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ) |
42 |
36 41
|
bitr4i |
⊢ ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ↔ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ) |
43 |
31 42
|
mpbir |
⊢ ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω |
44 |
|
rnuni |
⊢ ran ∪ ( rec ( 𝐺 , ∅ ) “ ω ) = ∪ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ran 𝑎 |
45 |
|
eliun |
⊢ ( 𝑏 ∈ ∪ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ran 𝑎 ↔ ∃ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) 𝑏 ∈ ran 𝑎 ) |
46 |
|
df-rex |
⊢ ( ∃ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) 𝑏 ∈ ran 𝑎 ↔ ∃ 𝑎 ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) ) |
47 |
|
funfn |
⊢ ( Fun rec ( 𝐺 , ∅ ) ↔ rec ( 𝐺 , ∅ ) Fn dom rec ( 𝐺 , ∅ ) ) |
48 |
32 47
|
mpbi |
⊢ rec ( 𝐺 , ∅ ) Fn dom rec ( 𝐺 , ∅ ) |
49 |
|
rdgdmlim |
⊢ Lim dom rec ( 𝐺 , ∅ ) |
50 |
|
limomss |
⊢ ( Lim dom rec ( 𝐺 , ∅ ) → ω ⊆ dom rec ( 𝐺 , ∅ ) ) |
51 |
49 50
|
ax-mp |
⊢ ω ⊆ dom rec ( 𝐺 , ∅ ) |
52 |
|
fvelimab |
⊢ ( ( rec ( 𝐺 , ∅ ) Fn dom rec ( 𝐺 , ∅ ) ∧ ω ⊆ dom rec ( 𝐺 , ∅ ) ) → ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ↔ ∃ 𝑐 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 ) ) |
53 |
48 51 52
|
mp2an |
⊢ ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ↔ ∃ 𝑐 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 ) |
54 |
1 2
|
ackbij2lem2 |
⊢ ( 𝑐 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) : ( 𝑅1 ‘ 𝑐 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ) |
55 |
|
f1ofo |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) : ( 𝑅1 ‘ 𝑐 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) : ( 𝑅1 ‘ 𝑐 ) –onto→ ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ) |
56 |
|
forn |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) : ( 𝑅1 ‘ 𝑐 ) –onto→ ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) → ran ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ) |
57 |
54 55 56
|
3syl |
⊢ ( 𝑐 ∈ ω → ran ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ) |
58 |
|
r1fin |
⊢ ( 𝑐 ∈ ω → ( 𝑅1 ‘ 𝑐 ) ∈ Fin ) |
59 |
|
ficardom |
⊢ ( ( 𝑅1 ‘ 𝑐 ) ∈ Fin → ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ∈ ω ) |
60 |
58 59
|
syl |
⊢ ( 𝑐 ∈ ω → ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ∈ ω ) |
61 |
|
ordelss |
⊢ ( ( Ord ω ∧ ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ∈ ω ) → ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ⊆ ω ) |
62 |
10 60 61
|
sylancr |
⊢ ( 𝑐 ∈ ω → ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ⊆ ω ) |
63 |
57 62
|
eqsstrd |
⊢ ( 𝑐 ∈ ω → ran ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) ⊆ ω ) |
64 |
|
rneq |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 → ran ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = ran 𝑎 ) |
65 |
64
|
sseq1d |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 → ( ran ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) ⊆ ω ↔ ran 𝑎 ⊆ ω ) ) |
66 |
63 65
|
syl5ibcom |
⊢ ( 𝑐 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 → ran 𝑎 ⊆ ω ) ) |
67 |
66
|
rexlimiv |
⊢ ( ∃ 𝑐 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 → ran 𝑎 ⊆ ω ) |
68 |
53 67
|
sylbi |
⊢ ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) → ran 𝑎 ⊆ ω ) |
69 |
68
|
sselda |
⊢ ( ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) → 𝑏 ∈ ω ) |
70 |
69
|
exlimiv |
⊢ ( ∃ 𝑎 ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) → 𝑏 ∈ ω ) |
71 |
|
peano2 |
⊢ ( 𝑏 ∈ ω → suc 𝑏 ∈ ω ) |
72 |
|
fnfvima |
⊢ ( ( rec ( 𝐺 , ∅ ) Fn dom rec ( 𝐺 , ∅ ) ∧ ω ⊆ dom rec ( 𝐺 , ∅ ) ∧ suc 𝑏 ∈ ω ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ) |
73 |
48 51 71 72
|
mp3an12i |
⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ) |
74 |
|
vex |
⊢ 𝑏 ∈ V |
75 |
|
cardnn |
⊢ ( suc 𝑏 ∈ ω → ( card ‘ suc 𝑏 ) = suc 𝑏 ) |
76 |
|
fvex |
⊢ ( 𝑅1 ‘ suc 𝑏 ) ∈ V |
77 |
37
|
simpri |
⊢ Lim dom 𝑅1 |
78 |
|
limomss |
⊢ ( Lim dom 𝑅1 → ω ⊆ dom 𝑅1 ) |
79 |
77 78
|
ax-mp |
⊢ ω ⊆ dom 𝑅1 |
80 |
79
|
sseli |
⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ∈ dom 𝑅1 ) |
81 |
|
onssr1 |
⊢ ( suc 𝑏 ∈ dom 𝑅1 → suc 𝑏 ⊆ ( 𝑅1 ‘ suc 𝑏 ) ) |
82 |
80 81
|
syl |
⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ⊆ ( 𝑅1 ‘ suc 𝑏 ) ) |
83 |
|
ssdomg |
⊢ ( ( 𝑅1 ‘ suc 𝑏 ) ∈ V → ( suc 𝑏 ⊆ ( 𝑅1 ‘ suc 𝑏 ) → suc 𝑏 ≼ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
84 |
76 82 83
|
mpsyl |
⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ≼ ( 𝑅1 ‘ suc 𝑏 ) ) |
85 |
|
nnon |
⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ∈ On ) |
86 |
|
onenon |
⊢ ( suc 𝑏 ∈ On → suc 𝑏 ∈ dom card ) |
87 |
85 86
|
syl |
⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ∈ dom card ) |
88 |
|
r1fin |
⊢ ( suc 𝑏 ∈ ω → ( 𝑅1 ‘ suc 𝑏 ) ∈ Fin ) |
89 |
|
finnum |
⊢ ( ( 𝑅1 ‘ suc 𝑏 ) ∈ Fin → ( 𝑅1 ‘ suc 𝑏 ) ∈ dom card ) |
90 |
88 89
|
syl |
⊢ ( suc 𝑏 ∈ ω → ( 𝑅1 ‘ suc 𝑏 ) ∈ dom card ) |
91 |
|
carddom2 |
⊢ ( ( suc 𝑏 ∈ dom card ∧ ( 𝑅1 ‘ suc 𝑏 ) ∈ dom card ) → ( ( card ‘ suc 𝑏 ) ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ suc 𝑏 ≼ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
92 |
87 90 91
|
syl2anc |
⊢ ( suc 𝑏 ∈ ω → ( ( card ‘ suc 𝑏 ) ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ suc 𝑏 ≼ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
93 |
84 92
|
mpbird |
⊢ ( suc 𝑏 ∈ ω → ( card ‘ suc 𝑏 ) ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
94 |
75 93
|
eqsstrrd |
⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
95 |
71 94
|
syl |
⊢ ( 𝑏 ∈ ω → suc 𝑏 ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
96 |
|
sucssel |
⊢ ( 𝑏 ∈ V → ( suc 𝑏 ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝑏 ∈ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) ) |
97 |
74 95 96
|
mpsyl |
⊢ ( 𝑏 ∈ ω → 𝑏 ∈ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
98 |
1 2
|
ackbij2lem2 |
⊢ ( suc 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
99 |
|
f1ofo |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
100 |
|
forn |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) → ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
101 |
71 98 99 100
|
4syl |
⊢ ( 𝑏 ∈ ω → ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
102 |
97 101
|
eleqtrrd |
⊢ ( 𝑏 ∈ ω → 𝑏 ∈ ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
103 |
|
fvex |
⊢ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ V |
104 |
|
eleq1 |
⊢ ( 𝑎 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ↔ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ) ) |
105 |
|
rneq |
⊢ ( 𝑎 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ran 𝑎 = ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
106 |
105
|
eleq2d |
⊢ ( 𝑎 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( 𝑏 ∈ ran 𝑎 ↔ 𝑏 ∈ ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ) |
107 |
104 106
|
anbi12d |
⊢ ( 𝑎 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) ↔ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ) ) |
108 |
103 107
|
spcev |
⊢ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) → ∃ 𝑎 ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) ) |
109 |
73 102 108
|
syl2anc |
⊢ ( 𝑏 ∈ ω → ∃ 𝑎 ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) ) |
110 |
70 109
|
impbii |
⊢ ( ∃ 𝑎 ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) ↔ 𝑏 ∈ ω ) |
111 |
45 46 110
|
3bitri |
⊢ ( 𝑏 ∈ ∪ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ran 𝑎 ↔ 𝑏 ∈ ω ) |
112 |
111
|
eqriv |
⊢ ∪ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ran 𝑎 = ω |
113 |
44 112
|
eqtri |
⊢ ran ∪ ( rec ( 𝐺 , ∅ ) “ ω ) = ω |
114 |
|
dff1o5 |
⊢ ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω ↔ ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ∧ ran ∪ ( rec ( 𝐺 , ∅ ) “ ω ) = ω ) ) |
115 |
43 113 114
|
mpbir2an |
⊢ ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω |
116 |
|
f1oeq1 |
⊢ ( 𝐻 = ∪ ( rec ( 𝐺 , ∅ ) “ ω ) → ( 𝐻 : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω ↔ ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω ) ) |
117 |
3 116
|
ax-mp |
⊢ ( 𝐻 : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω ↔ ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω ) |
118 |
115 117
|
mpbir |
⊢ 𝐻 : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω |