| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackbij.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 2 |
|
ackbij.g |
⊢ 𝐺 = ( 𝑥 ∈ V ↦ ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) ) |
| 3 |
|
ackbij.h |
⊢ 𝐻 = ∪ ( rec ( 𝐺 , ∅ ) “ ω ) |
| 4 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) |
| 5 |
|
fvex |
⊢ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ∈ V |
| 6 |
4 5
|
f1iun |
⊢ ( ∀ 𝑎 ∈ ω ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ∧ ∀ 𝑏 ∈ ω ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∨ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) → ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ) |
| 7 |
1 2
|
ackbij2lem2 |
⊢ ( 𝑎 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ) |
| 8 |
|
f1of1 |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝑎 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ) |
| 10 |
|
ordom |
⊢ Ord ω |
| 11 |
|
r1fin |
⊢ ( 𝑎 ∈ ω → ( 𝑅1 ‘ 𝑎 ) ∈ Fin ) |
| 12 |
|
ficardom |
⊢ ( ( 𝑅1 ‘ 𝑎 ) ∈ Fin → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ∈ ω ) |
| 13 |
11 12
|
syl |
⊢ ( 𝑎 ∈ ω → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ∈ ω ) |
| 14 |
|
ordelss |
⊢ ( ( Ord ω ∧ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ∈ ω ) → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ⊆ ω ) |
| 15 |
10 13 14
|
sylancr |
⊢ ( 𝑎 ∈ ω → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ⊆ ω ) |
| 16 |
|
f1ss |
⊢ ( ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ∧ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ⊆ ω ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ) |
| 17 |
9 15 16
|
syl2anc |
⊢ ( 𝑎 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ) |
| 18 |
|
nnord |
⊢ ( 𝑎 ∈ ω → Ord 𝑎 ) |
| 19 |
|
nnord |
⊢ ( 𝑏 ∈ ω → Ord 𝑏 ) |
| 20 |
|
ordtri2or2 |
⊢ ( ( Ord 𝑎 ∧ Ord 𝑏 ) → ( 𝑎 ⊆ 𝑏 ∨ 𝑏 ⊆ 𝑎 ) ) |
| 21 |
18 19 20
|
syl2an |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( 𝑎 ⊆ 𝑏 ∨ 𝑏 ⊆ 𝑎 ) ) |
| 22 |
1 2
|
ackbij2lem4 |
⊢ ( ( ( 𝑏 ∈ ω ∧ 𝑎 ∈ ω ) ∧ 𝑎 ⊆ 𝑏 ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) |
| 23 |
22
|
ex |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑎 ∈ ω ) → ( 𝑎 ⊆ 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ) |
| 24 |
23
|
ancoms |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( 𝑎 ⊆ 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ) |
| 25 |
1 2
|
ackbij2lem4 |
⊢ ( ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ 𝑏 ⊆ 𝑎 ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) |
| 26 |
25
|
ex |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( 𝑏 ⊆ 𝑎 → ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) |
| 27 |
24 26
|
orim12d |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ( 𝑎 ⊆ 𝑏 ∨ 𝑏 ⊆ 𝑎 ) → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∨ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) ) |
| 28 |
21 27
|
mpd |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∨ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) |
| 29 |
28
|
ralrimiva |
⊢ ( 𝑎 ∈ ω → ∀ 𝑏 ∈ ω ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∨ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) |
| 30 |
17 29
|
jca |
⊢ ( 𝑎 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ∧ ∀ 𝑏 ∈ ω ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∨ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) ) |
| 31 |
6 30
|
mprg |
⊢ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) –1-1→ ω |
| 32 |
|
rdgfun |
⊢ Fun rec ( 𝐺 , ∅ ) |
| 33 |
|
funiunfv |
⊢ ( Fun rec ( 𝐺 , ∅ ) → ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ∪ ( rec ( 𝐺 , ∅ ) “ ω ) ) |
| 34 |
33
|
eqcomd |
⊢ ( Fun rec ( 𝐺 , ∅ ) → ∪ ( rec ( 𝐺 , ∅ ) “ ω ) = ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) |
| 35 |
|
f1eq1 |
⊢ ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) = ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) → ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ↔ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ) ) |
| 36 |
32 34 35
|
mp2b |
⊢ ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ↔ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ) |
| 37 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
| 38 |
37
|
simpli |
⊢ Fun 𝑅1 |
| 39 |
|
funiunfv |
⊢ ( Fun 𝑅1 → ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) = ∪ ( 𝑅1 “ ω ) ) |
| 40 |
|
f1eq2 |
⊢ ( ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) = ∪ ( 𝑅1 “ ω ) → ( ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ↔ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ) ) |
| 41 |
38 39 40
|
mp2b |
⊢ ( ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ↔ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ) |
| 42 |
36 41
|
bitr4i |
⊢ ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ↔ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ) |
| 43 |
31 42
|
mpbir |
⊢ ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω |
| 44 |
|
rnuni |
⊢ ran ∪ ( rec ( 𝐺 , ∅ ) “ ω ) = ∪ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ran 𝑎 |
| 45 |
|
eliun |
⊢ ( 𝑏 ∈ ∪ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ran 𝑎 ↔ ∃ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) 𝑏 ∈ ran 𝑎 ) |
| 46 |
|
df-rex |
⊢ ( ∃ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) 𝑏 ∈ ran 𝑎 ↔ ∃ 𝑎 ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) ) |
| 47 |
|
funfn |
⊢ ( Fun rec ( 𝐺 , ∅ ) ↔ rec ( 𝐺 , ∅ ) Fn dom rec ( 𝐺 , ∅ ) ) |
| 48 |
32 47
|
mpbi |
⊢ rec ( 𝐺 , ∅ ) Fn dom rec ( 𝐺 , ∅ ) |
| 49 |
|
rdgdmlim |
⊢ Lim dom rec ( 𝐺 , ∅ ) |
| 50 |
|
limomss |
⊢ ( Lim dom rec ( 𝐺 , ∅ ) → ω ⊆ dom rec ( 𝐺 , ∅ ) ) |
| 51 |
49 50
|
ax-mp |
⊢ ω ⊆ dom rec ( 𝐺 , ∅ ) |
| 52 |
|
fvelimab |
⊢ ( ( rec ( 𝐺 , ∅ ) Fn dom rec ( 𝐺 , ∅ ) ∧ ω ⊆ dom rec ( 𝐺 , ∅ ) ) → ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ↔ ∃ 𝑐 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 ) ) |
| 53 |
48 51 52
|
mp2an |
⊢ ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ↔ ∃ 𝑐 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 ) |
| 54 |
1 2
|
ackbij2lem2 |
⊢ ( 𝑐 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) : ( 𝑅1 ‘ 𝑐 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ) |
| 55 |
|
f1ofo |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) : ( 𝑅1 ‘ 𝑐 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) : ( 𝑅1 ‘ 𝑐 ) –onto→ ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ) |
| 56 |
|
forn |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) : ( 𝑅1 ‘ 𝑐 ) –onto→ ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) → ran ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ) |
| 57 |
54 55 56
|
3syl |
⊢ ( 𝑐 ∈ ω → ran ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ) |
| 58 |
|
r1fin |
⊢ ( 𝑐 ∈ ω → ( 𝑅1 ‘ 𝑐 ) ∈ Fin ) |
| 59 |
|
ficardom |
⊢ ( ( 𝑅1 ‘ 𝑐 ) ∈ Fin → ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ∈ ω ) |
| 60 |
58 59
|
syl |
⊢ ( 𝑐 ∈ ω → ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ∈ ω ) |
| 61 |
|
ordelss |
⊢ ( ( Ord ω ∧ ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ∈ ω ) → ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ⊆ ω ) |
| 62 |
10 60 61
|
sylancr |
⊢ ( 𝑐 ∈ ω → ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ⊆ ω ) |
| 63 |
57 62
|
eqsstrd |
⊢ ( 𝑐 ∈ ω → ran ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) ⊆ ω ) |
| 64 |
|
rneq |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 → ran ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = ran 𝑎 ) |
| 65 |
64
|
sseq1d |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 → ( ran ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) ⊆ ω ↔ ran 𝑎 ⊆ ω ) ) |
| 66 |
63 65
|
syl5ibcom |
⊢ ( 𝑐 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 → ran 𝑎 ⊆ ω ) ) |
| 67 |
66
|
rexlimiv |
⊢ ( ∃ 𝑐 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 → ran 𝑎 ⊆ ω ) |
| 68 |
53 67
|
sylbi |
⊢ ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) → ran 𝑎 ⊆ ω ) |
| 69 |
68
|
sselda |
⊢ ( ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) → 𝑏 ∈ ω ) |
| 70 |
69
|
exlimiv |
⊢ ( ∃ 𝑎 ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) → 𝑏 ∈ ω ) |
| 71 |
|
peano2 |
⊢ ( 𝑏 ∈ ω → suc 𝑏 ∈ ω ) |
| 72 |
|
fnfvima |
⊢ ( ( rec ( 𝐺 , ∅ ) Fn dom rec ( 𝐺 , ∅ ) ∧ ω ⊆ dom rec ( 𝐺 , ∅ ) ∧ suc 𝑏 ∈ ω ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ) |
| 73 |
48 51 71 72
|
mp3an12i |
⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ) |
| 74 |
|
vex |
⊢ 𝑏 ∈ V |
| 75 |
|
cardnn |
⊢ ( suc 𝑏 ∈ ω → ( card ‘ suc 𝑏 ) = suc 𝑏 ) |
| 76 |
|
fvex |
⊢ ( 𝑅1 ‘ suc 𝑏 ) ∈ V |
| 77 |
37
|
simpri |
⊢ Lim dom 𝑅1 |
| 78 |
|
limomss |
⊢ ( Lim dom 𝑅1 → ω ⊆ dom 𝑅1 ) |
| 79 |
77 78
|
ax-mp |
⊢ ω ⊆ dom 𝑅1 |
| 80 |
79
|
sseli |
⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ∈ dom 𝑅1 ) |
| 81 |
|
onssr1 |
⊢ ( suc 𝑏 ∈ dom 𝑅1 → suc 𝑏 ⊆ ( 𝑅1 ‘ suc 𝑏 ) ) |
| 82 |
80 81
|
syl |
⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ⊆ ( 𝑅1 ‘ suc 𝑏 ) ) |
| 83 |
|
ssdomg |
⊢ ( ( 𝑅1 ‘ suc 𝑏 ) ∈ V → ( suc 𝑏 ⊆ ( 𝑅1 ‘ suc 𝑏 ) → suc 𝑏 ≼ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 84 |
76 82 83
|
mpsyl |
⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ≼ ( 𝑅1 ‘ suc 𝑏 ) ) |
| 85 |
|
nnon |
⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ∈ On ) |
| 86 |
|
onenon |
⊢ ( suc 𝑏 ∈ On → suc 𝑏 ∈ dom card ) |
| 87 |
85 86
|
syl |
⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ∈ dom card ) |
| 88 |
|
r1fin |
⊢ ( suc 𝑏 ∈ ω → ( 𝑅1 ‘ suc 𝑏 ) ∈ Fin ) |
| 89 |
|
finnum |
⊢ ( ( 𝑅1 ‘ suc 𝑏 ) ∈ Fin → ( 𝑅1 ‘ suc 𝑏 ) ∈ dom card ) |
| 90 |
88 89
|
syl |
⊢ ( suc 𝑏 ∈ ω → ( 𝑅1 ‘ suc 𝑏 ) ∈ dom card ) |
| 91 |
|
carddom2 |
⊢ ( ( suc 𝑏 ∈ dom card ∧ ( 𝑅1 ‘ suc 𝑏 ) ∈ dom card ) → ( ( card ‘ suc 𝑏 ) ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ suc 𝑏 ≼ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 92 |
87 90 91
|
syl2anc |
⊢ ( suc 𝑏 ∈ ω → ( ( card ‘ suc 𝑏 ) ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ suc 𝑏 ≼ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 93 |
84 92
|
mpbird |
⊢ ( suc 𝑏 ∈ ω → ( card ‘ suc 𝑏 ) ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 94 |
75 93
|
eqsstrrd |
⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 95 |
71 94
|
syl |
⊢ ( 𝑏 ∈ ω → suc 𝑏 ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 96 |
|
sucssel |
⊢ ( 𝑏 ∈ V → ( suc 𝑏 ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝑏 ∈ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) ) |
| 97 |
74 95 96
|
mpsyl |
⊢ ( 𝑏 ∈ ω → 𝑏 ∈ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 98 |
1 2
|
ackbij2lem2 |
⊢ ( suc 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 99 |
|
f1ofo |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 100 |
|
forn |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) → ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 101 |
71 98 99 100
|
4syl |
⊢ ( 𝑏 ∈ ω → ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 102 |
97 101
|
eleqtrrd |
⊢ ( 𝑏 ∈ ω → 𝑏 ∈ ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
| 103 |
|
fvex |
⊢ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ V |
| 104 |
|
eleq1 |
⊢ ( 𝑎 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ↔ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ) ) |
| 105 |
|
rneq |
⊢ ( 𝑎 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ran 𝑎 = ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
| 106 |
105
|
eleq2d |
⊢ ( 𝑎 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( 𝑏 ∈ ran 𝑎 ↔ 𝑏 ∈ ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ) |
| 107 |
104 106
|
anbi12d |
⊢ ( 𝑎 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) ↔ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ) ) |
| 108 |
103 107
|
spcev |
⊢ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) → ∃ 𝑎 ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) ) |
| 109 |
73 102 108
|
syl2anc |
⊢ ( 𝑏 ∈ ω → ∃ 𝑎 ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) ) |
| 110 |
70 109
|
impbii |
⊢ ( ∃ 𝑎 ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) ↔ 𝑏 ∈ ω ) |
| 111 |
45 46 110
|
3bitri |
⊢ ( 𝑏 ∈ ∪ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ran 𝑎 ↔ 𝑏 ∈ ω ) |
| 112 |
111
|
eqriv |
⊢ ∪ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ran 𝑎 = ω |
| 113 |
44 112
|
eqtri |
⊢ ran ∪ ( rec ( 𝐺 , ∅ ) “ ω ) = ω |
| 114 |
|
dff1o5 |
⊢ ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω ↔ ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ∧ ran ∪ ( rec ( 𝐺 , ∅ ) “ ω ) = ω ) ) |
| 115 |
43 113 114
|
mpbir2an |
⊢ ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω |
| 116 |
|
f1oeq1 |
⊢ ( 𝐻 = ∪ ( rec ( 𝐺 , ∅ ) “ ω ) → ( 𝐻 : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω ↔ ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω ) ) |
| 117 |
3 116
|
ax-mp |
⊢ ( 𝐻 : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω ↔ ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω ) |
| 118 |
115 117
|
mpbir |
⊢ 𝐻 : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω |