Step |
Hyp |
Ref |
Expression |
1 |
|
ackbij.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
2 |
|
ackbij.g |
⊢ 𝐺 = ( 𝑥 ∈ V ↦ ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) ) |
3 |
|
fveq2 |
⊢ ( 𝑎 = ∅ → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ ∅ ) ) |
4 |
|
fveq2 |
⊢ ( 𝑎 = ∅ → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ ∅ ) ) |
5 |
|
2fveq3 |
⊢ ( 𝑎 = ∅ → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) = ( card ‘ ( 𝑅1 ‘ ∅ ) ) ) |
6 |
3 4 5
|
f1oeq123d |
⊢ ( 𝑎 = ∅ → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ↔ ( rec ( 𝐺 , ∅ ) ‘ ∅ ) : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ 𝑏 ) ) |
9 |
|
2fveq3 |
⊢ ( 𝑎 = 𝑏 → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) = ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) |
10 |
7 8 9
|
f1oeq123d |
⊢ ( 𝑎 = 𝑏 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ↔ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑎 = suc 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑎 = suc 𝑏 → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ suc 𝑏 ) ) |
13 |
|
2fveq3 |
⊢ ( 𝑎 = suc 𝑏 → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) = ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
14 |
11 12 13
|
f1oeq123d |
⊢ ( 𝑎 = suc 𝑏 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ↔ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ 𝐴 ) ) |
17 |
|
2fveq3 |
⊢ ( 𝑎 = 𝐴 → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) = ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
18 |
15 16 17
|
f1oeq123d |
⊢ ( 𝑎 = 𝐴 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ↔ ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
19 |
|
f1o0 |
⊢ ∅ : ∅ –1-1-onto→ ∅ |
20 |
|
0ex |
⊢ ∅ ∈ V |
21 |
20
|
rdg0 |
⊢ ( rec ( 𝐺 , ∅ ) ‘ ∅ ) = ∅ |
22 |
|
f1oeq1 |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ ∅ ) = ∅ → ( ( rec ( 𝐺 , ∅ ) ‘ ∅ ) : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) ↔ ∅ : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) ) ) |
23 |
21 22
|
ax-mp |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ ∅ ) : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) ↔ ∅ : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) ) |
24 |
|
r10 |
⊢ ( 𝑅1 ‘ ∅ ) = ∅ |
25 |
24
|
fveq2i |
⊢ ( card ‘ ( 𝑅1 ‘ ∅ ) ) = ( card ‘ ∅ ) |
26 |
|
card0 |
⊢ ( card ‘ ∅ ) = ∅ |
27 |
25 26
|
eqtri |
⊢ ( card ‘ ( 𝑅1 ‘ ∅ ) ) = ∅ |
28 |
|
f1oeq23 |
⊢ ( ( ( 𝑅1 ‘ ∅ ) = ∅ ∧ ( card ‘ ( 𝑅1 ‘ ∅ ) ) = ∅ ) → ( ∅ : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) ↔ ∅ : ∅ –1-1-onto→ ∅ ) ) |
29 |
24 27 28
|
mp2an |
⊢ ( ∅ : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) ↔ ∅ : ∅ –1-1-onto→ ∅ ) |
30 |
23 29
|
bitri |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ ∅ ) : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) ↔ ∅ : ∅ –1-1-onto→ ∅ ) |
31 |
19 30
|
mpbir |
⊢ ( rec ( 𝐺 , ∅ ) ‘ ∅ ) : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) |
32 |
1
|
ackbij1lem17 |
⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω |
33 |
32
|
a1i |
⊢ ( 𝑏 ∈ ω → 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω ) |
34 |
|
r1fin |
⊢ ( 𝑏 ∈ ω → ( 𝑅1 ‘ 𝑏 ) ∈ Fin ) |
35 |
|
ficardom |
⊢ ( ( 𝑅1 ‘ 𝑏 ) ∈ Fin → ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ∈ ω ) |
36 |
34 35
|
syl |
⊢ ( 𝑏 ∈ ω → ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ∈ ω ) |
37 |
|
ackbij2lem1 |
⊢ ( ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ∈ ω → 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ⊆ ( 𝒫 ω ∩ Fin ) ) |
38 |
36 37
|
syl |
⊢ ( 𝑏 ∈ ω → 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ⊆ ( 𝒫 ω ∩ Fin ) ) |
39 |
|
f1ores |
⊢ ( ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω ∧ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ⊆ ( 𝒫 ω ∩ Fin ) ) → ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) : 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) –1-1-onto→ ( 𝐹 “ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ) |
40 |
33 38 39
|
syl2anc |
⊢ ( 𝑏 ∈ ω → ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) : 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) –1-1-onto→ ( 𝐹 “ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ) |
41 |
1
|
ackbij1b |
⊢ ( ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ∈ ω → ( 𝐹 “ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) = ( card ‘ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ) |
42 |
36 41
|
syl |
⊢ ( 𝑏 ∈ ω → ( 𝐹 “ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) = ( card ‘ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ) |
43 |
|
ficardid |
⊢ ( ( 𝑅1 ‘ 𝑏 ) ∈ Fin → ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ≈ ( 𝑅1 ‘ 𝑏 ) ) |
44 |
|
pwen |
⊢ ( ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ≈ ( 𝑅1 ‘ 𝑏 ) → 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ≈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
45 |
|
carden2b |
⊢ ( 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ≈ 𝒫 ( 𝑅1 ‘ 𝑏 ) → ( card ‘ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) = ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) |
46 |
34 43 44 45
|
4syl |
⊢ ( 𝑏 ∈ ω → ( card ‘ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) = ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) |
47 |
42 46
|
eqtrd |
⊢ ( 𝑏 ∈ ω → ( 𝐹 “ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) = ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) |
48 |
47
|
f1oeq3d |
⊢ ( 𝑏 ∈ ω → ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) : 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) –1-1-onto→ ( 𝐹 “ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ↔ ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) : 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) ) |
49 |
40 48
|
mpbid |
⊢ ( 𝑏 ∈ ω → ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) : 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) |
50 |
49
|
adantr |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) : 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) |
51 |
|
f1opw |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) → ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) |
52 |
51
|
adantl |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) |
53 |
|
f1oco |
⊢ ( ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) : 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ∧ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) |
54 |
50 52 53
|
syl2anc |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) |
55 |
|
frsuc |
⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ suc 𝑏 ) = ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ 𝑏 ) ) ) |
56 |
|
peano2 |
⊢ ( 𝑏 ∈ ω → suc 𝑏 ∈ ω ) |
57 |
56
|
fvresd |
⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ suc 𝑏 ) = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
58 |
|
fvres |
⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ 𝑏 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) |
59 |
58
|
fveq2d |
⊢ ( 𝑏 ∈ ω → ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ 𝑏 ) ) = ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ) |
60 |
|
fvex |
⊢ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∈ V |
61 |
|
dmeq |
⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) → dom 𝑥 = dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) |
62 |
61
|
pweqd |
⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) → 𝒫 dom 𝑥 = 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) |
63 |
|
imaeq1 |
⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) → ( 𝑥 “ 𝑦 ) = ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) |
64 |
63
|
fveq2d |
⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) → ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) |
65 |
62 64
|
mpteq12dv |
⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) → ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ) |
66 |
60
|
dmex |
⊢ dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∈ V |
67 |
66
|
pwex |
⊢ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∈ V |
68 |
67
|
mptex |
⊢ ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ∈ V |
69 |
65 2 68
|
fvmpt |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∈ V → ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ) |
70 |
60 69
|
ax-mp |
⊢ ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) |
71 |
59 70
|
eqtrdi |
⊢ ( 𝑏 ∈ ω → ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ 𝑏 ) ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ) |
72 |
55 57 71
|
3eqtr3d |
⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ) |
73 |
72
|
adantr |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ) |
74 |
|
f1odm |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) → dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( 𝑅1 ‘ 𝑏 ) ) |
75 |
74
|
adantl |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( 𝑅1 ‘ 𝑏 ) ) |
76 |
75
|
pweqd |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
77 |
76
|
mpteq1d |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) = ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ) |
78 |
|
fvex |
⊢ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ∈ V |
79 |
|
eqid |
⊢ ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) = ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) |
80 |
78 79
|
fnmpti |
⊢ ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) Fn 𝒫 ( 𝑅1 ‘ 𝑏 ) |
81 |
80
|
a1i |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) Fn 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
82 |
|
f1ofn |
⊢ ( ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) Fn 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
83 |
54 82
|
syl |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) Fn 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
84 |
|
f1of |
⊢ ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) → ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) ⟶ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) |
85 |
52 84
|
syl |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) ⟶ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) |
86 |
85
|
ffvelrnda |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) ∈ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) |
87 |
86
|
fvresd |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) ) = ( 𝐹 ‘ ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) ) ) |
88 |
|
imaeq2 |
⊢ ( 𝑎 = 𝑐 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) = ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) |
89 |
|
eqid |
⊢ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) = ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) |
90 |
60
|
imaex |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ∈ V |
91 |
88 89 90
|
fvmpt |
⊢ ( 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) → ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) = ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) |
92 |
91
|
adantl |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) = ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) |
93 |
92
|
fveq2d |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) ) |
94 |
87 93
|
eqtrd |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) ) |
95 |
|
fvco3 |
⊢ ( ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) ⟶ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) ‘ 𝑐 ) = ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) ) ) |
96 |
85 95
|
sylan |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) ‘ 𝑐 ) = ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) ) ) |
97 |
|
imaeq2 |
⊢ ( 𝑦 = 𝑐 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) = ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) |
98 |
97
|
fveq2d |
⊢ ( 𝑦 = 𝑐 → ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) ) |
99 |
|
fvex |
⊢ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) ∈ V |
100 |
98 79 99
|
fvmpt |
⊢ ( 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) → ( ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ‘ 𝑐 ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) ) |
101 |
100
|
adantl |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ‘ 𝑐 ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) ) |
102 |
94 96 101
|
3eqtr4rd |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ‘ 𝑐 ) = ( ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) ‘ 𝑐 ) ) |
103 |
81 83 102
|
eqfnfvd |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) = ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) ) |
104 |
77 103
|
eqtrd |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) = ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) ) |
105 |
73 104
|
eqtrd |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) ) |
106 |
|
f1oeq1 |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) ) |
107 |
105 106
|
syl |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) ) |
108 |
|
nnon |
⊢ ( 𝑏 ∈ ω → 𝑏 ∈ On ) |
109 |
|
r1suc |
⊢ ( 𝑏 ∈ On → ( 𝑅1 ‘ suc 𝑏 ) = 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
110 |
108 109
|
syl |
⊢ ( 𝑏 ∈ ω → ( 𝑅1 ‘ suc 𝑏 ) = 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
111 |
110
|
fveq2d |
⊢ ( 𝑏 ∈ ω → ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) = ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) |
112 |
|
f1oeq23 |
⊢ ( ( ( 𝑅1 ‘ suc 𝑏 ) = 𝒫 ( 𝑅1 ‘ 𝑏 ) ∧ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) = ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) → ( ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) ) |
113 |
110 111 112
|
syl2anc |
⊢ ( 𝑏 ∈ ω → ( ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) ) |
114 |
113
|
adantr |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) ) |
115 |
107 114
|
bitrd |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) ) |
116 |
54 115
|
mpbird |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
117 |
116
|
ex |
⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) ) |
118 |
6 10 14 18 31 117
|
finds |
⊢ ( 𝐴 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |