| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackbij.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 2 |
|
ackbij.g |
⊢ 𝐺 = ( 𝑥 ∈ V ↦ ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) ) |
| 3 |
|
fveq2 |
⊢ ( 𝑎 = ∅ → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ ∅ ) ) |
| 4 |
|
suceq |
⊢ ( 𝑎 = ∅ → suc 𝑎 = suc ∅ ) |
| 5 |
4
|
fveq2d |
⊢ ( 𝑎 = ∅ → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ suc ∅ ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑎 = ∅ → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ ∅ ) ) |
| 7 |
5 6
|
reseq12d |
⊢ ( 𝑎 = ∅ → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) ↾ ( 𝑅1 ‘ 𝑎 ) ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc ∅ ) ↾ ( 𝑅1 ‘ ∅ ) ) ) |
| 8 |
3 7
|
eqeq12d |
⊢ ( 𝑎 = ∅ → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) ↾ ( 𝑅1 ‘ 𝑎 ) ) ↔ ( rec ( 𝐺 , ∅ ) ‘ ∅ ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc ∅ ) ↾ ( 𝑅1 ‘ ∅ ) ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) |
| 10 |
|
suceq |
⊢ ( 𝑎 = 𝑏 → suc 𝑎 = suc 𝑏 ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝑎 = 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ 𝑏 ) ) |
| 13 |
11 12
|
reseq12d |
⊢ ( 𝑎 = 𝑏 → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) ↾ ( 𝑅1 ‘ 𝑎 ) ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) |
| 14 |
9 13
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) ↾ ( 𝑅1 ‘ 𝑎 ) ) ↔ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑎 = suc 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
| 16 |
|
suceq |
⊢ ( 𝑎 = suc 𝑏 → suc 𝑎 = suc suc 𝑏 ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝑎 = suc 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑎 = suc 𝑏 → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ suc 𝑏 ) ) |
| 19 |
17 18
|
reseq12d |
⊢ ( 𝑎 = suc 𝑏 → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) ↾ ( 𝑅1 ‘ 𝑎 ) ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 20 |
15 19
|
eqeq12d |
⊢ ( 𝑎 = suc 𝑏 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) ↾ ( 𝑅1 ‘ 𝑎 ) ) ↔ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) ) |
| 22 |
|
suceq |
⊢ ( 𝑎 = 𝐴 → suc 𝑎 = suc 𝐴 ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝑎 = 𝐴 → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ suc 𝐴 ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ 𝐴 ) ) |
| 25 |
23 24
|
reseq12d |
⊢ ( 𝑎 = 𝐴 → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) ↾ ( 𝑅1 ‘ 𝑎 ) ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝐴 ) ↾ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 26 |
21 25
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑎 ) ↾ ( 𝑅1 ‘ 𝑎 ) ) ↔ ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝐴 ) ↾ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
| 27 |
|
res0 |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc ∅ ) ↾ ∅ ) = ∅ |
| 28 |
|
r10 |
⊢ ( 𝑅1 ‘ ∅ ) = ∅ |
| 29 |
28
|
reseq2i |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc ∅ ) ↾ ( 𝑅1 ‘ ∅ ) ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc ∅ ) ↾ ∅ ) |
| 30 |
|
0ex |
⊢ ∅ ∈ V |
| 31 |
30
|
rdg0 |
⊢ ( rec ( 𝐺 , ∅ ) ‘ ∅ ) = ∅ |
| 32 |
27 29 31
|
3eqtr4ri |
⊢ ( rec ( 𝐺 , ∅ ) ‘ ∅ ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc ∅ ) ↾ ( 𝑅1 ‘ ∅ ) ) |
| 33 |
|
peano2 |
⊢ ( 𝑏 ∈ ω → suc 𝑏 ∈ ω ) |
| 34 |
1 2
|
ackbij2lem2 |
⊢ ( suc 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 35 |
33 34
|
syl |
⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 36 |
|
f1ofn |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) Fn ( 𝑅1 ‘ suc 𝑏 ) ) |
| 37 |
35 36
|
syl |
⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) Fn ( 𝑅1 ‘ suc 𝑏 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) Fn ( 𝑅1 ‘ suc 𝑏 ) ) |
| 39 |
|
peano2 |
⊢ ( suc 𝑏 ∈ ω → suc suc 𝑏 ∈ ω ) |
| 40 |
1 2
|
ackbij2lem2 |
⊢ ( suc suc 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) : ( 𝑅1 ‘ suc suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc suc 𝑏 ) ) ) |
| 41 |
|
f1ofn |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) : ( 𝑅1 ‘ suc suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc suc 𝑏 ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) Fn ( 𝑅1 ‘ suc suc 𝑏 ) ) |
| 42 |
33 39 40 41
|
4syl |
⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) Fn ( 𝑅1 ‘ suc suc 𝑏 ) ) |
| 43 |
|
nnon |
⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ∈ On ) |
| 44 |
33 43
|
syl |
⊢ ( 𝑏 ∈ ω → suc 𝑏 ∈ On ) |
| 45 |
|
r1sssuc |
⊢ ( suc 𝑏 ∈ On → ( 𝑅1 ‘ suc 𝑏 ) ⊆ ( 𝑅1 ‘ suc suc 𝑏 ) ) |
| 46 |
44 45
|
syl |
⊢ ( 𝑏 ∈ ω → ( 𝑅1 ‘ suc 𝑏 ) ⊆ ( 𝑅1 ‘ suc suc 𝑏 ) ) |
| 47 |
|
fnssres |
⊢ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) Fn ( 𝑅1 ‘ suc suc 𝑏 ) ∧ ( 𝑅1 ‘ suc 𝑏 ) ⊆ ( 𝑅1 ‘ suc suc 𝑏 ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) Fn ( 𝑅1 ‘ suc 𝑏 ) ) |
| 48 |
42 46 47
|
syl2anc |
⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) Fn ( 𝑅1 ‘ suc 𝑏 ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) Fn ( 𝑅1 ‘ suc 𝑏 ) ) |
| 50 |
|
nnon |
⊢ ( 𝑏 ∈ ω → 𝑏 ∈ On ) |
| 51 |
|
r1suc |
⊢ ( 𝑏 ∈ On → ( 𝑅1 ‘ suc 𝑏 ) = 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
| 52 |
50 51
|
syl |
⊢ ( 𝑏 ∈ ω → ( 𝑅1 ‘ suc 𝑏 ) = 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
| 53 |
52
|
eleq2d |
⊢ ( 𝑏 ∈ ω → ( 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ↔ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) |
| 54 |
53
|
biimpa |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
| 55 |
54
|
elpwid |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝑐 ⊆ ( 𝑅1 ‘ 𝑏 ) ) |
| 56 |
|
resima2 |
⊢ ( 𝑐 ⊆ ( 𝑅1 ‘ 𝑏 ) → ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) |
| 57 |
55 56
|
syl |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) |
| 58 |
57
|
fveq2d |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) ) |
| 59 |
|
fvex |
⊢ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ V |
| 60 |
59
|
resex |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ∈ V |
| 61 |
|
dmeq |
⊢ ( 𝑥 = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → dom 𝑥 = dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) |
| 62 |
61
|
pweqd |
⊢ ( 𝑥 = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → 𝒫 dom 𝑥 = 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) |
| 63 |
|
imaeq1 |
⊢ ( 𝑥 = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → ( 𝑥 “ 𝑦 ) = ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) |
| 64 |
63
|
fveq2d |
⊢ ( 𝑥 = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) = ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) |
| 65 |
62 64
|
mpteq12dv |
⊢ ( 𝑥 = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) = ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) ) |
| 66 |
60
|
dmex |
⊢ dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ∈ V |
| 67 |
66
|
pwex |
⊢ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ∈ V |
| 68 |
67
|
mptex |
⊢ ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) ∈ V |
| 69 |
65 2 68
|
fvmpt |
⊢ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ∈ V → ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) = ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) ) |
| 70 |
60 69
|
ax-mp |
⊢ ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) = ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) |
| 71 |
70
|
fveq1i |
⊢ ( ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ 𝑐 ) = ( ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) ‘ 𝑐 ) |
| 72 |
|
r1sssuc |
⊢ ( 𝑏 ∈ On → ( 𝑅1 ‘ 𝑏 ) ⊆ ( 𝑅1 ‘ suc 𝑏 ) ) |
| 73 |
50 72
|
syl |
⊢ ( 𝑏 ∈ ω → ( 𝑅1 ‘ 𝑏 ) ⊆ ( 𝑅1 ‘ suc 𝑏 ) ) |
| 74 |
|
fnssres |
⊢ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) Fn ( 𝑅1 ‘ suc 𝑏 ) ∧ ( 𝑅1 ‘ 𝑏 ) ⊆ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) Fn ( 𝑅1 ‘ 𝑏 ) ) |
| 75 |
37 73 74
|
syl2anc |
⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) Fn ( 𝑅1 ‘ 𝑏 ) ) |
| 76 |
75
|
fndmd |
⊢ ( 𝑏 ∈ ω → dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) = ( 𝑅1 ‘ 𝑏 ) ) |
| 77 |
76
|
pweqd |
⊢ ( 𝑏 ∈ ω → 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) = 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
| 78 |
77
|
adantr |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) = 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
| 79 |
54 78
|
eleqtrrd |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝑐 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) |
| 80 |
|
imaeq2 |
⊢ ( 𝑦 = 𝑐 → ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) = ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) ) |
| 81 |
80
|
fveq2d |
⊢ ( 𝑦 = 𝑐 → ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) = ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) ) ) |
| 82 |
|
eqid |
⊢ ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) = ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) |
| 83 |
|
fvex |
⊢ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) ) ∈ V |
| 84 |
81 82 83
|
fvmpt |
⊢ ( 𝑐 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) ‘ 𝑐 ) = ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) ) ) |
| 85 |
79 84
|
syl |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( 𝑦 ∈ 𝒫 dom ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ↦ ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑦 ) ) ) ‘ 𝑐 ) = ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) ) ) |
| 86 |
71 85
|
eqtrid |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ 𝑐 ) = ( 𝐹 ‘ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) “ 𝑐 ) ) ) |
| 87 |
|
dmeq |
⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → dom 𝑥 = dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
| 88 |
87
|
pweqd |
⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → 𝒫 dom 𝑥 = 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
| 89 |
|
imaeq1 |
⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( 𝑥 “ 𝑦 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) |
| 90 |
89
|
fveq2d |
⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) |
| 91 |
88 90
|
mpteq12dv |
⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) ) |
| 92 |
59
|
dmex |
⊢ dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ V |
| 93 |
92
|
pwex |
⊢ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ V |
| 94 |
93
|
mptex |
⊢ ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) ∈ V |
| 95 |
91 2 94
|
fvmpt |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ V → ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) ) |
| 96 |
59 95
|
ax-mp |
⊢ ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) |
| 97 |
96
|
fveq1i |
⊢ ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) ‘ 𝑐 ) |
| 98 |
|
r1tr |
⊢ Tr ( 𝑅1 ‘ suc 𝑏 ) |
| 99 |
98
|
a1i |
⊢ ( 𝑏 ∈ ω → Tr ( 𝑅1 ‘ suc 𝑏 ) ) |
| 100 |
|
dftr4 |
⊢ ( Tr ( 𝑅1 ‘ suc 𝑏 ) ↔ ( 𝑅1 ‘ suc 𝑏 ) ⊆ 𝒫 ( 𝑅1 ‘ suc 𝑏 ) ) |
| 101 |
99 100
|
sylib |
⊢ ( 𝑏 ∈ ω → ( 𝑅1 ‘ suc 𝑏 ) ⊆ 𝒫 ( 𝑅1 ‘ suc 𝑏 ) ) |
| 102 |
101
|
sselda |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝑐 ∈ 𝒫 ( 𝑅1 ‘ suc 𝑏 ) ) |
| 103 |
|
f1odm |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) → dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( 𝑅1 ‘ suc 𝑏 ) ) |
| 104 |
35 103
|
syl |
⊢ ( 𝑏 ∈ ω → dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( 𝑅1 ‘ suc 𝑏 ) ) |
| 105 |
104
|
pweqd |
⊢ ( 𝑏 ∈ ω → 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = 𝒫 ( 𝑅1 ‘ suc 𝑏 ) ) |
| 106 |
105
|
adantr |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = 𝒫 ( 𝑅1 ‘ suc 𝑏 ) ) |
| 107 |
102 106
|
eleqtrrd |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝑐 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
| 108 |
|
imaeq2 |
⊢ ( 𝑦 = 𝑐 → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) |
| 109 |
108
|
fveq2d |
⊢ ( 𝑦 = 𝑐 → ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) ) |
| 110 |
|
eqid |
⊢ ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) |
| 111 |
|
fvex |
⊢ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) ∈ V |
| 112 |
109 110 111
|
fvmpt |
⊢ ( 𝑐 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) ‘ 𝑐 ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) ) |
| 113 |
107 112
|
syl |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑦 ) ) ) ‘ 𝑐 ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) ) |
| 114 |
97 113
|
eqtrid |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) “ 𝑐 ) ) ) |
| 115 |
58 86 114
|
3eqtr4d |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ‘ 𝑐 ) ) |
| 116 |
115
|
adantlr |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ‘ 𝑐 ) ) |
| 117 |
|
fveq2 |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) = ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ) |
| 118 |
117
|
fveq1d |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ 𝑐 ) ) |
| 119 |
118
|
ad2antlr |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ 𝑐 ) ) |
| 120 |
|
rdgsuc |
⊢ ( suc 𝑏 ∈ On → ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) = ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ) |
| 121 |
44 120
|
syl |
⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) = ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ) |
| 122 |
121
|
fveq1d |
⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ‘ 𝑐 ) ) |
| 123 |
122
|
ad2antrr |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ‘ 𝑐 ) ) |
| 124 |
116 119 123
|
3eqtr4rd |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ‘ 𝑐 ) ) |
| 125 |
|
fvres |
⊢ ( 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) → ( ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ‘ 𝑐 ) ) |
| 126 |
125
|
adantl |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ‘ 𝑐 ) ) |
| 127 |
|
rdgsuc |
⊢ ( 𝑏 ∈ On → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ) |
| 128 |
50 127
|
syl |
⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ) |
| 129 |
128
|
fveq1d |
⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ‘ 𝑐 ) ) |
| 130 |
129
|
ad2antrr |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ‘ 𝑐 ) = ( ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ‘ 𝑐 ) ) |
| 131 |
124 126 130
|
3eqtr4rd |
⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ ( 𝑅1 ‘ suc 𝑏 ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ‘ 𝑐 ) = ( ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ) |
| 132 |
38 49 131
|
eqfnfvd |
⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 133 |
132
|
ex |
⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ↾ ( 𝑅1 ‘ 𝑏 ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc suc 𝑏 ) ↾ ( 𝑅1 ‘ suc 𝑏 ) ) ) ) |
| 134 |
8 14 20 26 32 133
|
finds |
⊢ ( 𝐴 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) = ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝐴 ) ↾ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 135 |
|
resss |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝐴 ) ↾ ( 𝑅1 ‘ 𝐴 ) ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝐴 ) |
| 136 |
134 135
|
eqsstrdi |
⊢ ( 𝐴 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝐴 ) ) |