Step |
Hyp |
Ref |
Expression |
1 |
|
ackbij.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
2 |
|
ackbij.g |
⊢ 𝐺 = ( 𝑥 ∈ V ↦ ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) ) |
3 |
|
fveq2 |
⊢ ( 𝑎 = 𝐵 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ) |
4 |
3
|
sseq2d |
⊢ ( 𝑎 = 𝐵 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ↔ ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) |
6 |
5
|
sseq2d |
⊢ ( 𝑎 = 𝑏 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ↔ ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑎 = suc 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
8 |
7
|
sseq2d |
⊢ ( 𝑎 = suc 𝑏 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ↔ ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) ) |
10 |
9
|
sseq2d |
⊢ ( 𝑎 = 𝐴 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ↔ ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) ) ) |
11 |
|
ssidd |
⊢ ( 𝐵 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ) |
12 |
1 2
|
ackbij2lem3 |
⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝑏 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑏 ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
14 |
|
sstr2 |
⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ) |
15 |
13 14
|
syl5com |
⊢ ( ( ( 𝑏 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑏 ) → ( ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) → ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ) |
16 |
4 6 8 10 11 15
|
findsg |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝐴 ) → ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) ) |