Step |
Hyp |
Ref |
Expression |
1 |
|
ackbijnn.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 2 ↑ 𝑦 ) ) |
2 |
|
hashgval2 |
⊢ ( ♯ ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
3 |
2
|
hashgf1o |
⊢ ( ♯ ↾ ω ) : ω –1-1-onto→ ℕ0 |
4 |
|
sneq |
⊢ ( 𝑤 = 𝑦 → { 𝑤 } = { 𝑦 } ) |
5 |
|
pweq |
⊢ ( 𝑤 = 𝑦 → 𝒫 𝑤 = 𝒫 𝑦 ) |
6 |
4 5
|
xpeq12d |
⊢ ( 𝑤 = 𝑦 → ( { 𝑤 } × 𝒫 𝑤 ) = ( { 𝑦 } × 𝒫 𝑦 ) ) |
7 |
6
|
cbviunv |
⊢ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) = ∪ 𝑦 ∈ 𝑧 ( { 𝑦 } × 𝒫 𝑦 ) |
8 |
|
iuneq1 |
⊢ ( 𝑧 = 𝑥 → ∪ 𝑦 ∈ 𝑧 ( { 𝑦 } × 𝒫 𝑦 ) = ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) |
9 |
7 8
|
eqtrid |
⊢ ( 𝑧 = 𝑥 → ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) = ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝑧 = 𝑥 → ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) = ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
11 |
10
|
cbvmptv |
⊢ ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
12 |
11
|
ackbij1 |
⊢ ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) : ( 𝒫 ω ∩ Fin ) –1-1-onto→ ω |
13 |
|
f1ocnv |
⊢ ( ( ♯ ↾ ω ) : ω –1-1-onto→ ℕ0 → ◡ ( ♯ ↾ ω ) : ℕ0 –1-1-onto→ ω ) |
14 |
3 13
|
ax-mp |
⊢ ◡ ( ♯ ↾ ω ) : ℕ0 –1-1-onto→ ω |
15 |
|
f1opwfi |
⊢ ( ◡ ( ♯ ↾ ω ) : ℕ0 –1-1-onto→ ω → ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ( 𝒫 ω ∩ Fin ) ) |
16 |
14 15
|
ax-mp |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ( 𝒫 ω ∩ Fin ) |
17 |
|
f1oco |
⊢ ( ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) : ( 𝒫 ω ∩ Fin ) –1-1-onto→ ω ∧ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ω ) |
18 |
12 16 17
|
mp2an |
⊢ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ω |
19 |
|
f1oco |
⊢ ( ( ( ♯ ↾ ω ) : ω –1-1-onto→ ℕ0 ∧ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ω ) → ( ( ♯ ↾ ω ) ∘ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 ) |
20 |
3 18 19
|
mp2an |
⊢ ( ( ♯ ↾ ω ) ∘ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 |
21 |
|
inss2 |
⊢ ( 𝒫 ω ∩ Fin ) ⊆ Fin |
22 |
|
f1of |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ( 𝒫 ω ∩ Fin ) → ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) : ( 𝒫 ℕ0 ∩ Fin ) ⟶ ( 𝒫 ω ∩ Fin ) ) |
23 |
16 22
|
ax-mp |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) : ( 𝒫 ℕ0 ∩ Fin ) ⟶ ( 𝒫 ω ∩ Fin ) |
24 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) = ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) |
25 |
24
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ∈ ( 𝒫 ω ∩ Fin ) ↔ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) : ( 𝒫 ℕ0 ∩ Fin ) ⟶ ( 𝒫 ω ∩ Fin ) ) |
26 |
23 25
|
mpbir |
⊢ ∀ 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ∈ ( 𝒫 ω ∩ Fin ) |
27 |
26
|
rspec |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
28 |
21 27
|
sselid |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ∈ Fin ) |
29 |
|
snfi |
⊢ { 𝑤 } ∈ Fin |
30 |
|
cnvimass |
⊢ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ⊆ dom ( ♯ ↾ ω ) |
31 |
|
dmhashres |
⊢ dom ( ♯ ↾ ω ) = ω |
32 |
30 31
|
sseqtri |
⊢ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ⊆ ω |
33 |
|
onfin2 |
⊢ ω = ( On ∩ Fin ) |
34 |
|
inss2 |
⊢ ( On ∩ Fin ) ⊆ Fin |
35 |
33 34
|
eqsstri |
⊢ ω ⊆ Fin |
36 |
32 35
|
sstri |
⊢ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ⊆ Fin |
37 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) → 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) |
38 |
36 37
|
sselid |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) → 𝑤 ∈ Fin ) |
39 |
|
pwfi |
⊢ ( 𝑤 ∈ Fin ↔ 𝒫 𝑤 ∈ Fin ) |
40 |
38 39
|
sylib |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) → 𝒫 𝑤 ∈ Fin ) |
41 |
|
xpfi |
⊢ ( ( { 𝑤 } ∈ Fin ∧ 𝒫 𝑤 ∈ Fin ) → ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin ) |
42 |
29 40 41
|
sylancr |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) → ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin ) |
43 |
42
|
ralrimiva |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ∀ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin ) |
44 |
|
iunfi |
⊢ ( ( ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ∈ Fin ∧ ∀ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin ) → ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin ) |
45 |
28 43 44
|
syl2anc |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin ) |
46 |
|
ficardom |
⊢ ( ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin → ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ∈ ω ) |
47 |
45 46
|
syl |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ∈ ω ) |
48 |
47
|
fvresd |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ( ♯ ↾ ω ) ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) = ( ♯ ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) ) |
49 |
|
hashcard |
⊢ ( ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin → ( ♯ ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) = ( ♯ ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) |
50 |
45 49
|
syl |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ♯ ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) = ( ♯ ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) |
51 |
|
xp1st |
⊢ ( 𝑧 ∈ ( { 𝑤 } × 𝒫 𝑤 ) → ( 1st ‘ 𝑧 ) ∈ { 𝑤 } ) |
52 |
|
elsni |
⊢ ( ( 1st ‘ 𝑧 ) ∈ { 𝑤 } → ( 1st ‘ 𝑧 ) = 𝑤 ) |
53 |
51 52
|
syl |
⊢ ( 𝑧 ∈ ( { 𝑤 } × 𝒫 𝑤 ) → ( 1st ‘ 𝑧 ) = 𝑤 ) |
54 |
53
|
rgen |
⊢ ∀ 𝑧 ∈ ( { 𝑤 } × 𝒫 𝑤 ) ( 1st ‘ 𝑧 ) = 𝑤 |
55 |
54
|
rgenw |
⊢ ∀ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ∀ 𝑧 ∈ ( { 𝑤 } × 𝒫 𝑤 ) ( 1st ‘ 𝑧 ) = 𝑤 |
56 |
|
invdisj |
⊢ ( ∀ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ∀ 𝑧 ∈ ( { 𝑤 } × 𝒫 𝑤 ) ( 1st ‘ 𝑧 ) = 𝑤 → Disj 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) |
57 |
55 56
|
mp1i |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → Disj 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) |
58 |
28 42 57
|
hashiun |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ♯ ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) = Σ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( ♯ ‘ ( { 𝑤 } × 𝒫 𝑤 ) ) ) |
59 |
|
sneq |
⊢ ( 𝑤 = ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) → { 𝑤 } = { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } ) |
60 |
|
pweq |
⊢ ( 𝑤 = ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) → 𝒫 𝑤 = 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) |
61 |
59 60
|
xpeq12d |
⊢ ( 𝑤 = ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) → ( { 𝑤 } × 𝒫 𝑤 ) = ( { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } × 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) |
62 |
61
|
fveq2d |
⊢ ( 𝑤 = ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) → ( ♯ ‘ ( { 𝑤 } × 𝒫 𝑤 ) ) = ( ♯ ‘ ( { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } × 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) ) |
63 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → 𝑥 ∈ Fin ) |
64 |
|
f1of1 |
⊢ ( ◡ ( ♯ ↾ ω ) : ℕ0 –1-1-onto→ ω → ◡ ( ♯ ↾ ω ) : ℕ0 –1-1→ ω ) |
65 |
14 64
|
ax-mp |
⊢ ◡ ( ♯ ↾ ω ) : ℕ0 –1-1→ ω |
66 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → 𝑥 ∈ 𝒫 ℕ0 ) |
67 |
66
|
elpwid |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → 𝑥 ⊆ ℕ0 ) |
68 |
|
f1ores |
⊢ ( ( ◡ ( ♯ ↾ ω ) : ℕ0 –1-1→ ω ∧ 𝑥 ⊆ ℕ0 ) → ( ◡ ( ♯ ↾ ω ) ↾ 𝑥 ) : 𝑥 –1-1-onto→ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) |
69 |
65 67 68
|
sylancr |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ◡ ( ♯ ↾ ω ) ↾ 𝑥 ) : 𝑥 –1-1-onto→ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) |
70 |
|
fvres |
⊢ ( 𝑦 ∈ 𝑥 → ( ( ◡ ( ♯ ↾ ω ) ↾ 𝑥 ) ‘ 𝑦 ) = ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) |
71 |
70
|
adantl |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ◡ ( ♯ ↾ ω ) ↾ 𝑥 ) ‘ 𝑦 ) = ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) |
72 |
|
hashcl |
⊢ ( ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin → ( ♯ ‘ ( { 𝑤 } × 𝒫 𝑤 ) ) ∈ ℕ0 ) |
73 |
|
nn0cn |
⊢ ( ( ♯ ‘ ( { 𝑤 } × 𝒫 𝑤 ) ) ∈ ℕ0 → ( ♯ ‘ ( { 𝑤 } × 𝒫 𝑤 ) ) ∈ ℂ ) |
74 |
42 72 73
|
3syl |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) → ( ♯ ‘ ( { 𝑤 } × 𝒫 𝑤 ) ) ∈ ℂ ) |
75 |
62 63 69 71 74
|
fsumf1o |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → Σ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( ♯ ‘ ( { 𝑤 } × 𝒫 𝑤 ) ) = Σ 𝑦 ∈ 𝑥 ( ♯ ‘ ( { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } × 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) ) |
76 |
|
snfi |
⊢ { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } ∈ Fin |
77 |
67
|
sselda |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ℕ0 ) |
78 |
|
f1of |
⊢ ( ◡ ( ♯ ↾ ω ) : ℕ0 –1-1-onto→ ω → ◡ ( ♯ ↾ ω ) : ℕ0 ⟶ ω ) |
79 |
14 78
|
ax-mp |
⊢ ◡ ( ♯ ↾ ω ) : ℕ0 ⟶ ω |
80 |
79
|
ffvelrni |
⊢ ( 𝑦 ∈ ℕ0 → ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ ω ) |
81 |
77 80
|
syl |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ ω ) |
82 |
35 81
|
sselid |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ Fin ) |
83 |
|
pwfi |
⊢ ( ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ Fin ↔ 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ Fin ) |
84 |
82 83
|
sylib |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ Fin ) |
85 |
|
hashxp |
⊢ ( ( { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } ∈ Fin ∧ 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ Fin ) → ( ♯ ‘ ( { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } × 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) = ( ( ♯ ‘ { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } ) · ( ♯ ‘ 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) ) |
86 |
76 84 85
|
sylancr |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ♯ ‘ ( { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } × 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) = ( ( ♯ ‘ { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } ) · ( ♯ ‘ 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) ) |
87 |
|
hashsng |
⊢ ( ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ ω → ( ♯ ‘ { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } ) = 1 ) |
88 |
81 87
|
syl |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ♯ ‘ { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } ) = 1 ) |
89 |
|
hashpw |
⊢ ( ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ Fin → ( ♯ ‘ 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) = ( 2 ↑ ( ♯ ‘ ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) ) |
90 |
82 89
|
syl |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ♯ ‘ 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) = ( 2 ↑ ( ♯ ‘ ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) ) |
91 |
81
|
fvresd |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ♯ ↾ ω ) ‘ ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) = ( ♯ ‘ ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) |
92 |
|
f1ocnvfv2 |
⊢ ( ( ( ♯ ↾ ω ) : ω –1-1-onto→ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( ♯ ↾ ω ) ‘ ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) = 𝑦 ) |
93 |
3 77 92
|
sylancr |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ♯ ↾ ω ) ‘ ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) = 𝑦 ) |
94 |
91 93
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ♯ ‘ ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) = 𝑦 ) |
95 |
94
|
oveq2d |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( 2 ↑ ( ♯ ‘ ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) = ( 2 ↑ 𝑦 ) ) |
96 |
90 95
|
eqtrd |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ♯ ‘ 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) = ( 2 ↑ 𝑦 ) ) |
97 |
88 96
|
oveq12d |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ♯ ‘ { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } ) · ( ♯ ‘ 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) = ( 1 · ( 2 ↑ 𝑦 ) ) ) |
98 |
|
2cn |
⊢ 2 ∈ ℂ |
99 |
|
expcl |
⊢ ( ( 2 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( 2 ↑ 𝑦 ) ∈ ℂ ) |
100 |
98 77 99
|
sylancr |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( 2 ↑ 𝑦 ) ∈ ℂ ) |
101 |
100
|
mulid2d |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( 1 · ( 2 ↑ 𝑦 ) ) = ( 2 ↑ 𝑦 ) ) |
102 |
86 97 101
|
3eqtrd |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ♯ ‘ ( { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } × 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) = ( 2 ↑ 𝑦 ) ) |
103 |
102
|
sumeq2dv |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → Σ 𝑦 ∈ 𝑥 ( ♯ ‘ ( { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } × 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) = Σ 𝑦 ∈ 𝑥 ( 2 ↑ 𝑦 ) ) |
104 |
58 75 103
|
3eqtrd |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ♯ ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) = Σ 𝑦 ∈ 𝑥 ( 2 ↑ 𝑦 ) ) |
105 |
48 50 104
|
3eqtrd |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ( ♯ ↾ ω ) ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) = Σ 𝑦 ∈ 𝑥 ( 2 ↑ 𝑦 ) ) |
106 |
105
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ( ♯ ↾ ω ) ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) ) = ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 2 ↑ 𝑦 ) ) |
107 |
47
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ) → ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ∈ ω ) |
108 |
27
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ) → ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
109 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) = ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) |
110 |
|
eqidd |
⊢ ( ⊤ → ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) = ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ) |
111 |
|
iuneq1 |
⊢ ( 𝑧 = ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) → ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) = ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) |
112 |
111
|
fveq2d |
⊢ ( 𝑧 = ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) → ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) = ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) |
113 |
108 109 110 112
|
fmptco |
⊢ ( ⊤ → ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) ) |
114 |
|
f1of |
⊢ ( ( ♯ ↾ ω ) : ω –1-1-onto→ ℕ0 → ( ♯ ↾ ω ) : ω ⟶ ℕ0 ) |
115 |
3 114
|
mp1i |
⊢ ( ⊤ → ( ♯ ↾ ω ) : ω ⟶ ℕ0 ) |
116 |
115
|
feqmptd |
⊢ ( ⊤ → ( ♯ ↾ ω ) = ( 𝑦 ∈ ω ↦ ( ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) |
117 |
|
fveq2 |
⊢ ( 𝑦 = ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) → ( ( ♯ ↾ ω ) ‘ 𝑦 ) = ( ( ♯ ↾ ω ) ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) ) |
118 |
107 113 116 117
|
fmptco |
⊢ ( ⊤ → ( ( ♯ ↾ ω ) ∘ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ( ♯ ↾ ω ) ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) ) ) |
119 |
118
|
mptru |
⊢ ( ( ♯ ↾ ω ) ∘ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ( ♯ ↾ ω ) ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) ) |
120 |
106 119 1
|
3eqtr4i |
⊢ ( ( ♯ ↾ ω ) ∘ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) ) = 𝐹 |
121 |
|
f1oeq1 |
⊢ ( ( ( ♯ ↾ ω ) ∘ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) ) = 𝐹 → ( ( ( ♯ ↾ ω ) ∘ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 ↔ 𝐹 : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 ) ) |
122 |
120 121
|
ax-mp |
⊢ ( ( ( ♯ ↾ ω ) ∘ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 ↔ 𝐹 : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 ) |
123 |
20 122
|
mpbi |
⊢ 𝐹 : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 |