| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-ack | 
							⊢ Ack  =  seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq1i | 
							⊢ ( Ack ‘ 0 )  =  ( seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) ‘ 0 )  | 
						
						
							| 3 | 
							
								
							 | 
							0z | 
							⊢ 0  ∈  ℤ  | 
						
						
							| 4 | 
							
								
							 | 
							seq1 | 
							⊢ ( 0  ∈  ℤ  →  ( seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) ‘ 0 )  =  ( ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ‘ 0 ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							ax-mp | 
							⊢ ( seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) ‘ 0 )  =  ( ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ‘ 0 )  | 
						
						
							| 6 | 
							
								
							 | 
							0nn0 | 
							⊢ 0  ∈  ℕ0  | 
						
						
							| 7 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝑖  =  0  →  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) )  =  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							nn0ex | 
							⊢ ℕ0  ∈  V  | 
						
						
							| 10 | 
							
								9
							 | 
							mptex | 
							⊢ ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  ∈  V  | 
						
						
							| 11 | 
							
								7 8 10
							 | 
							fvmpt | 
							⊢ ( 0  ∈  ℕ0  →  ( ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							ax-mp | 
							⊢ ( ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  | 
						
						
							| 13 | 
							
								2 5 12
							 | 
							3eqtri | 
							⊢ ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  |