Step |
Hyp |
Ref |
Expression |
1 |
|
df-ack |
⊢ Ack = seq 0 ( ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ) |
2 |
1
|
fveq1i |
⊢ ( Ack ‘ 0 ) = ( seq 0 ( ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ) ‘ 0 ) |
3 |
|
0z |
⊢ 0 ∈ ℤ |
4 |
|
seq1 |
⊢ ( 0 ∈ ℤ → ( seq 0 ( ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ) ‘ 0 ) = ( ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ‘ 0 ) ) |
5 |
3 4
|
ax-mp |
⊢ ( seq 0 ( ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ) ‘ 0 ) = ( ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ‘ 0 ) |
6 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
7 |
|
iftrue |
⊢ ( 𝑖 = 0 → if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) ) |
8 |
|
eqid |
⊢ ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) |
9 |
|
nn0ex |
⊢ ℕ0 ∈ V |
10 |
9
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) ∈ V |
11 |
7 8 10
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) ) |
12 |
6 11
|
ax-mp |
⊢ ( ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) |
13 |
2 5 12
|
3eqtri |
⊢ ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) |