| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ackval0 | 
							⊢ ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑛  =  0  →  ( 𝑛  +  1 )  =  ( 0  +  1 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							0p1e1 | 
							⊢ ( 0  +  1 )  =  1  | 
						
						
							| 4 | 
							
								2 3
							 | 
							eqtrdi | 
							⊢ ( 𝑛  =  0  →  ( 𝑛  +  1 )  =  1 )  | 
						
						
							| 5 | 
							
								
							 | 
							0nn0 | 
							⊢ 0  ∈  ℕ0  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  →  0  ∈  ℕ0 )  | 
						
						
							| 7 | 
							
								
							 | 
							1nn0 | 
							⊢ 1  ∈  ℕ0  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							⊢ ( ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  →  1  ∈  ℕ0 )  | 
						
						
							| 9 | 
							
								1 4 6 8
							 | 
							fvmptd3 | 
							⊢ ( ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  →  ( ( Ack ‘ 0 ) ‘ 0 )  =  1 )  | 
						
						
							| 10 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑛  =  1  →  ( 𝑛  +  1 )  =  ( 1  +  1 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							1p1e2 | 
							⊢ ( 1  +  1 )  =  2  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqtrdi | 
							⊢ ( 𝑛  =  1  →  ( 𝑛  +  1 )  =  2 )  | 
						
						
							| 13 | 
							
								
							 | 
							2nn0 | 
							⊢ 2  ∈  ℕ0  | 
						
						
							| 14 | 
							
								13
							 | 
							a1i | 
							⊢ ( ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  →  2  ∈  ℕ0 )  | 
						
						
							| 15 | 
							
								1 12 8 14
							 | 
							fvmptd3 | 
							⊢ ( ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  →  ( ( Ack ‘ 0 ) ‘ 1 )  =  2 )  | 
						
						
							| 16 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑛  =  2  →  ( 𝑛  +  1 )  =  ( 2  +  1 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							2p1e3 | 
							⊢ ( 2  +  1 )  =  3  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eqtrdi | 
							⊢ ( 𝑛  =  2  →  ( 𝑛  +  1 )  =  3 )  | 
						
						
							| 19 | 
							
								
							 | 
							3nn0 | 
							⊢ 3  ∈  ℕ0  | 
						
						
							| 20 | 
							
								19
							 | 
							a1i | 
							⊢ ( ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  →  3  ∈  ℕ0 )  | 
						
						
							| 21 | 
							
								1 18 14 20
							 | 
							fvmptd3 | 
							⊢ ( ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  →  ( ( Ack ‘ 0 ) ‘ 2 )  =  3 )  | 
						
						
							| 22 | 
							
								9 15 21
							 | 
							oteq123d | 
							⊢ ( ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  →  〈 ( ( Ack ‘ 0 ) ‘ 0 ) ,  ( ( Ack ‘ 0 ) ‘ 1 ) ,  ( ( Ack ‘ 0 ) ‘ 2 ) 〉  =  〈 1 ,  2 ,  3 〉 )  | 
						
						
							| 23 | 
							
								1 22
							 | 
							ax-mp | 
							⊢ 〈 ( ( Ack ‘ 0 ) ‘ 0 ) ,  ( ( Ack ‘ 0 ) ‘ 1 ) ,  ( ( Ack ‘ 0 ) ‘ 2 ) 〉  =  〈 1 ,  2 ,  3 〉  |