| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ackval1 | 
							⊢ ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑛  =  0  →  ( 𝑛  +  2 )  =  ( 0  +  2 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							2cn | 
							⊢ 2  ∈  ℂ  | 
						
						
							| 4 | 
							
								3
							 | 
							addlidi | 
							⊢ ( 0  +  2 )  =  2  | 
						
						
							| 5 | 
							
								2 4
							 | 
							eqtrdi | 
							⊢ ( 𝑛  =  0  →  ( 𝑛  +  2 )  =  2 )  | 
						
						
							| 6 | 
							
								
							 | 
							0nn0 | 
							⊢ 0  ∈  ℕ0  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  0  ∈  ℕ0 )  | 
						
						
							| 8 | 
							
								
							 | 
							2nn0 | 
							⊢ 2  ∈  ℕ0  | 
						
						
							| 9 | 
							
								8
							 | 
							a1i | 
							⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  2  ∈  ℕ0 )  | 
						
						
							| 10 | 
							
								1 5 7 9
							 | 
							fvmptd3 | 
							⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  ( ( Ack ‘ 1 ) ‘ 0 )  =  2 )  | 
						
						
							| 11 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑛  =  1  →  ( 𝑛  +  2 )  =  ( 1  +  2 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							1p2e3 | 
							⊢ ( 1  +  2 )  =  3  | 
						
						
							| 13 | 
							
								11 12
							 | 
							eqtrdi | 
							⊢ ( 𝑛  =  1  →  ( 𝑛  +  2 )  =  3 )  | 
						
						
							| 14 | 
							
								
							 | 
							1nn0 | 
							⊢ 1  ∈  ℕ0  | 
						
						
							| 15 | 
							
								14
							 | 
							a1i | 
							⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  1  ∈  ℕ0 )  | 
						
						
							| 16 | 
							
								
							 | 
							3nn0 | 
							⊢ 3  ∈  ℕ0  | 
						
						
							| 17 | 
							
								16
							 | 
							a1i | 
							⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  3  ∈  ℕ0 )  | 
						
						
							| 18 | 
							
								1 13 15 17
							 | 
							fvmptd3 | 
							⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  ( ( Ack ‘ 1 ) ‘ 1 )  =  3 )  | 
						
						
							| 19 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑛  =  2  →  ( 𝑛  +  2 )  =  ( 2  +  2 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							2p2e4 | 
							⊢ ( 2  +  2 )  =  4  | 
						
						
							| 21 | 
							
								19 20
							 | 
							eqtrdi | 
							⊢ ( 𝑛  =  2  →  ( 𝑛  +  2 )  =  4 )  | 
						
						
							| 22 | 
							
								
							 | 
							4nn0 | 
							⊢ 4  ∈  ℕ0  | 
						
						
							| 23 | 
							
								22
							 | 
							a1i | 
							⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  4  ∈  ℕ0 )  | 
						
						
							| 24 | 
							
								1 21 9 23
							 | 
							fvmptd3 | 
							⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  ( ( Ack ‘ 1 ) ‘ 2 )  =  4 )  | 
						
						
							| 25 | 
							
								10 18 24
							 | 
							oteq123d | 
							⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  〈 ( ( Ack ‘ 1 ) ‘ 0 ) ,  ( ( Ack ‘ 1 ) ‘ 1 ) ,  ( ( Ack ‘ 1 ) ‘ 2 ) 〉  =  〈 2 ,  3 ,  4 〉 )  | 
						
						
							| 26 | 
							
								1 25
							 | 
							ax-mp | 
							⊢ 〈 ( ( Ack ‘ 1 ) ‘ 0 ) ,  ( ( Ack ‘ 1 ) ‘ 1 ) ,  ( ( Ack ‘ 1 ) ‘ 2 ) 〉  =  〈 2 ,  3 ,  4 〉  |