Step |
Hyp |
Ref |
Expression |
1 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
2 |
1
|
fveq2i |
⊢ ( Ack ‘ 2 ) = ( Ack ‘ ( 1 + 1 ) ) |
3 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
4 |
|
ackvalsuc1mpt |
⊢ ( 1 ∈ ℕ0 → ( Ack ‘ ( 1 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( Ack ‘ ( 1 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) |
6 |
|
peano2nn0 |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ℕ0 ) |
7 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
8 |
|
ackval1 |
⊢ ( Ack ‘ 1 ) = ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 + 2 ) ) |
9 |
8
|
itcovalpc |
⊢ ( ( ( 𝑛 + 1 ) ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛 + 1 ) ) = ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 + ( 2 · ( 𝑛 + 1 ) ) ) ) ) |
10 |
6 7 9
|
sylancl |
⊢ ( 𝑛 ∈ ℕ0 → ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛 + 1 ) ) = ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 + ( 2 · ( 𝑛 + 1 ) ) ) ) ) |
11 |
10
|
fveq1d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 + ( 2 · ( 𝑛 + 1 ) ) ) ) ‘ 1 ) ) |
12 |
|
eqidd |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 + ( 2 · ( 𝑛 + 1 ) ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 + ( 2 · ( 𝑛 + 1 ) ) ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑖 = 1 → ( 𝑖 + ( 2 · ( 𝑛 + 1 ) ) ) = ( 1 + ( 2 · ( 𝑛 + 1 ) ) ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑖 = 1 ) → ( 𝑖 + ( 2 · ( 𝑛 + 1 ) ) ) = ( 1 + ( 2 · ( 𝑛 + 1 ) ) ) ) |
15 |
3
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → 1 ∈ ℕ0 ) |
16 |
|
ovexd |
⊢ ( 𝑛 ∈ ℕ0 → ( 1 + ( 2 · ( 𝑛 + 1 ) ) ) ∈ V ) |
17 |
12 14 15 16
|
fvmptd |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 + ( 2 · ( 𝑛 + 1 ) ) ) ) ‘ 1 ) = ( 1 + ( 2 · ( 𝑛 + 1 ) ) ) ) |
18 |
|
nn0cn |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) |
19 |
|
1cnd |
⊢ ( 𝑛 ∈ ℂ → 1 ∈ ℂ ) |
20 |
|
2cnd |
⊢ ( 𝑛 ∈ ℂ → 2 ∈ ℂ ) |
21 |
|
peano2cn |
⊢ ( 𝑛 ∈ ℂ → ( 𝑛 + 1 ) ∈ ℂ ) |
22 |
20 21
|
mulcld |
⊢ ( 𝑛 ∈ ℂ → ( 2 · ( 𝑛 + 1 ) ) ∈ ℂ ) |
23 |
19 22
|
addcomd |
⊢ ( 𝑛 ∈ ℂ → ( 1 + ( 2 · ( 𝑛 + 1 ) ) ) = ( ( 2 · ( 𝑛 + 1 ) ) + 1 ) ) |
24 |
|
id |
⊢ ( 𝑛 ∈ ℂ → 𝑛 ∈ ℂ ) |
25 |
20 24 19
|
adddid |
⊢ ( 𝑛 ∈ ℂ → ( 2 · ( 𝑛 + 1 ) ) = ( ( 2 · 𝑛 ) + ( 2 · 1 ) ) ) |
26 |
25
|
oveq1d |
⊢ ( 𝑛 ∈ ℂ → ( ( 2 · ( 𝑛 + 1 ) ) + 1 ) = ( ( ( 2 · 𝑛 ) + ( 2 · 1 ) ) + 1 ) ) |
27 |
20 24
|
mulcld |
⊢ ( 𝑛 ∈ ℂ → ( 2 · 𝑛 ) ∈ ℂ ) |
28 |
20 19
|
mulcld |
⊢ ( 𝑛 ∈ ℂ → ( 2 · 1 ) ∈ ℂ ) |
29 |
27 28 19
|
addassd |
⊢ ( 𝑛 ∈ ℂ → ( ( ( 2 · 𝑛 ) + ( 2 · 1 ) ) + 1 ) = ( ( 2 · 𝑛 ) + ( ( 2 · 1 ) + 1 ) ) ) |
30 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
31 |
30
|
oveq1i |
⊢ ( ( 2 · 1 ) + 1 ) = ( 2 + 1 ) |
32 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
33 |
31 32
|
eqtri |
⊢ ( ( 2 · 1 ) + 1 ) = 3 |
34 |
33
|
a1i |
⊢ ( 𝑛 ∈ ℂ → ( ( 2 · 1 ) + 1 ) = 3 ) |
35 |
34
|
oveq2d |
⊢ ( 𝑛 ∈ ℂ → ( ( 2 · 𝑛 ) + ( ( 2 · 1 ) + 1 ) ) = ( ( 2 · 𝑛 ) + 3 ) ) |
36 |
29 35
|
eqtrd |
⊢ ( 𝑛 ∈ ℂ → ( ( ( 2 · 𝑛 ) + ( 2 · 1 ) ) + 1 ) = ( ( 2 · 𝑛 ) + 3 ) ) |
37 |
23 26 36
|
3eqtrd |
⊢ ( 𝑛 ∈ ℂ → ( 1 + ( 2 · ( 𝑛 + 1 ) ) ) = ( ( 2 · 𝑛 ) + 3 ) ) |
38 |
18 37
|
syl |
⊢ ( 𝑛 ∈ ℕ0 → ( 1 + ( 2 · ( 𝑛 + 1 ) ) ) = ( ( 2 · 𝑛 ) + 3 ) ) |
39 |
11 17 38
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ0 → ( ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) = ( ( 2 · 𝑛 ) + 3 ) ) |
40 |
39
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 · 𝑛 ) + 3 ) ) |
41 |
2 5 40
|
3eqtri |
⊢ ( Ack ‘ 2 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 · 𝑛 ) + 3 ) ) |