| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackval3 |
⊢ ( Ack ‘ 3 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) |
| 2 |
|
oveq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 + 3 ) = ( 0 + 3 ) ) |
| 3 |
|
3cn |
⊢ 3 ∈ ℂ |
| 4 |
3
|
addlidi |
⊢ ( 0 + 3 ) = 3 |
| 5 |
2 4
|
eqtrdi |
⊢ ( 𝑛 = 0 → ( 𝑛 + 3 ) = 3 ) |
| 6 |
5
|
oveq2d |
⊢ ( 𝑛 = 0 → ( 2 ↑ ( 𝑛 + 3 ) ) = ( 2 ↑ 3 ) ) |
| 7 |
6
|
oveq1d |
⊢ ( 𝑛 = 0 → ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) = ( ( 2 ↑ 3 ) − 3 ) ) |
| 8 |
|
cu2 |
⊢ ( 2 ↑ 3 ) = 8 |
| 9 |
8
|
oveq1i |
⊢ ( ( 2 ↑ 3 ) − 3 ) = ( 8 − 3 ) |
| 10 |
|
5cn |
⊢ 5 ∈ ℂ |
| 11 |
|
5p3e8 |
⊢ ( 5 + 3 ) = 8 |
| 12 |
11
|
eqcomi |
⊢ 8 = ( 5 + 3 ) |
| 13 |
10 3 12
|
mvrraddi |
⊢ ( 8 − 3 ) = 5 |
| 14 |
9 13
|
eqtri |
⊢ ( ( 2 ↑ 3 ) − 3 ) = 5 |
| 15 |
7 14
|
eqtrdi |
⊢ ( 𝑛 = 0 → ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) = 5 ) |
| 16 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 17 |
16
|
a1i |
⊢ ( ( Ack ‘ 3 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) → 0 ∈ ℕ0 ) |
| 18 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
| 19 |
18
|
a1i |
⊢ ( ( Ack ‘ 3 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) → 5 ∈ ℕ0 ) |
| 20 |
1 15 17 19
|
fvmptd3 |
⊢ ( ( Ack ‘ 3 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) → ( ( Ack ‘ 3 ) ‘ 0 ) = 5 ) |
| 21 |
|
oveq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 + 3 ) = ( 1 + 3 ) ) |
| 22 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 23 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
| 24 |
3 22 23
|
addcomli |
⊢ ( 1 + 3 ) = 4 |
| 25 |
21 24
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( 𝑛 + 3 ) = 4 ) |
| 26 |
25
|
oveq2d |
⊢ ( 𝑛 = 1 → ( 2 ↑ ( 𝑛 + 3 ) ) = ( 2 ↑ 4 ) ) |
| 27 |
26
|
oveq1d |
⊢ ( 𝑛 = 1 → ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) = ( ( 2 ↑ 4 ) − 3 ) ) |
| 28 |
|
2exp4 |
⊢ ( 2 ↑ 4 ) = ; 1 6 |
| 29 |
28
|
oveq1i |
⊢ ( ( 2 ↑ 4 ) − 3 ) = ( ; 1 6 − 3 ) |
| 30 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 31 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 32 |
30 31
|
deccl |
⊢ ; 1 3 ∈ ℕ0 |
| 33 |
32
|
nn0cni |
⊢ ; 1 3 ∈ ℂ |
| 34 |
|
eqid |
⊢ ; 1 3 = ; 1 3 |
| 35 |
|
3p3e6 |
⊢ ( 3 + 3 ) = 6 |
| 36 |
30 31 31 34 35
|
decaddi |
⊢ ( ; 1 3 + 3 ) = ; 1 6 |
| 37 |
36
|
eqcomi |
⊢ ; 1 6 = ( ; 1 3 + 3 ) |
| 38 |
33 3 37
|
mvrraddi |
⊢ ( ; 1 6 − 3 ) = ; 1 3 |
| 39 |
29 38
|
eqtri |
⊢ ( ( 2 ↑ 4 ) − 3 ) = ; 1 3 |
| 40 |
27 39
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) = ; 1 3 ) |
| 41 |
30
|
a1i |
⊢ ( ( Ack ‘ 3 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) → 1 ∈ ℕ0 ) |
| 42 |
32
|
a1i |
⊢ ( ( Ack ‘ 3 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) → ; 1 3 ∈ ℕ0 ) |
| 43 |
1 40 41 42
|
fvmptd3 |
⊢ ( ( Ack ‘ 3 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) → ( ( Ack ‘ 3 ) ‘ 1 ) = ; 1 3 ) |
| 44 |
|
oveq1 |
⊢ ( 𝑛 = 2 → ( 𝑛 + 3 ) = ( 2 + 3 ) ) |
| 45 |
|
2cn |
⊢ 2 ∈ ℂ |
| 46 |
|
3p2e5 |
⊢ ( 3 + 2 ) = 5 |
| 47 |
3 45 46
|
addcomli |
⊢ ( 2 + 3 ) = 5 |
| 48 |
44 47
|
eqtrdi |
⊢ ( 𝑛 = 2 → ( 𝑛 + 3 ) = 5 ) |
| 49 |
48
|
oveq2d |
⊢ ( 𝑛 = 2 → ( 2 ↑ ( 𝑛 + 3 ) ) = ( 2 ↑ 5 ) ) |
| 50 |
49
|
oveq1d |
⊢ ( 𝑛 = 2 → ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) = ( ( 2 ↑ 5 ) − 3 ) ) |
| 51 |
|
2exp5 |
⊢ ( 2 ↑ 5 ) = ; 3 2 |
| 52 |
51
|
oveq1i |
⊢ ( ( 2 ↑ 5 ) − 3 ) = ( ; 3 2 − 3 ) |
| 53 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 54 |
|
9nn0 |
⊢ 9 ∈ ℕ0 |
| 55 |
53 54
|
deccl |
⊢ ; 2 9 ∈ ℕ0 |
| 56 |
55
|
nn0cni |
⊢ ; 2 9 ∈ ℂ |
| 57 |
|
eqid |
⊢ ; 2 9 = ; 2 9 |
| 58 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 59 |
|
9p3e12 |
⊢ ( 9 + 3 ) = ; 1 2 |
| 60 |
53 54 31 57 58 53 59
|
decaddci |
⊢ ( ; 2 9 + 3 ) = ; 3 2 |
| 61 |
60
|
eqcomi |
⊢ ; 3 2 = ( ; 2 9 + 3 ) |
| 62 |
56 3 61
|
mvrraddi |
⊢ ( ; 3 2 − 3 ) = ; 2 9 |
| 63 |
52 62
|
eqtri |
⊢ ( ( 2 ↑ 5 ) − 3 ) = ; 2 9 |
| 64 |
50 63
|
eqtrdi |
⊢ ( 𝑛 = 2 → ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) = ; 2 9 ) |
| 65 |
53
|
a1i |
⊢ ( ( Ack ‘ 3 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) → 2 ∈ ℕ0 ) |
| 66 |
55
|
a1i |
⊢ ( ( Ack ‘ 3 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) → ; 2 9 ∈ ℕ0 ) |
| 67 |
1 64 65 66
|
fvmptd3 |
⊢ ( ( Ack ‘ 3 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) → ( ( Ack ‘ 3 ) ‘ 2 ) = ; 2 9 ) |
| 68 |
20 43 67
|
oteq123d |
⊢ ( ( Ack ‘ 3 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) → 〈 ( ( Ack ‘ 3 ) ‘ 0 ) , ( ( Ack ‘ 3 ) ‘ 1 ) , ( ( Ack ‘ 3 ) ‘ 2 ) 〉 = 〈 5 , ; 1 3 , ; 2 9 〉 ) |
| 69 |
1 68
|
ax-mp |
⊢ 〈 ( ( Ack ‘ 3 ) ‘ 0 ) , ( ( Ack ‘ 3 ) ‘ 1 ) , ( ( Ack ‘ 3 ) ‘ 2 ) 〉 = 〈 5 , ; 1 3 , ; 2 9 〉 |