Step |
Hyp |
Ref |
Expression |
1 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
2 |
1
|
fveq2i |
⊢ ( Ack ‘ 4 ) = ( Ack ‘ ( 3 + 1 ) ) |
3 |
2
|
fveq1i |
⊢ ( ( Ack ‘ 4 ) ‘ 0 ) = ( ( Ack ‘ ( 3 + 1 ) ) ‘ 0 ) |
4 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
5 |
|
ackvalsuc0val |
⊢ ( 3 ∈ ℕ0 → ( ( Ack ‘ ( 3 + 1 ) ) ‘ 0 ) = ( ( Ack ‘ 3 ) ‘ 1 ) ) |
6 |
4 5
|
ax-mp |
⊢ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 0 ) = ( ( Ack ‘ 3 ) ‘ 1 ) |
7 |
|
ackval3012 |
⊢ 〈 ( ( Ack ‘ 3 ) ‘ 0 ) , ( ( Ack ‘ 3 ) ‘ 1 ) , ( ( Ack ‘ 3 ) ‘ 2 ) 〉 = 〈 5 , ; 1 3 , ; 2 9 〉 |
8 |
|
fvex |
⊢ ( ( Ack ‘ 3 ) ‘ 0 ) ∈ V |
9 |
|
fvex |
⊢ ( ( Ack ‘ 3 ) ‘ 1 ) ∈ V |
10 |
|
fvex |
⊢ ( ( Ack ‘ 3 ) ‘ 2 ) ∈ V |
11 |
8 9 10
|
otth |
⊢ ( 〈 ( ( Ack ‘ 3 ) ‘ 0 ) , ( ( Ack ‘ 3 ) ‘ 1 ) , ( ( Ack ‘ 3 ) ‘ 2 ) 〉 = 〈 5 , ; 1 3 , ; 2 9 〉 ↔ ( ( ( Ack ‘ 3 ) ‘ 0 ) = 5 ∧ ( ( Ack ‘ 3 ) ‘ 1 ) = ; 1 3 ∧ ( ( Ack ‘ 3 ) ‘ 2 ) = ; 2 9 ) ) |
12 |
11
|
simp2bi |
⊢ ( 〈 ( ( Ack ‘ 3 ) ‘ 0 ) , ( ( Ack ‘ 3 ) ‘ 1 ) , ( ( Ack ‘ 3 ) ‘ 2 ) 〉 = 〈 5 , ; 1 3 , ; 2 9 〉 → ( ( Ack ‘ 3 ) ‘ 1 ) = ; 1 3 ) |
13 |
7 12
|
ax-mp |
⊢ ( ( Ack ‘ 3 ) ‘ 1 ) = ; 1 3 |
14 |
3 6 13
|
3eqtri |
⊢ ( ( Ack ‘ 4 ) ‘ 0 ) = ; 1 3 |