| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
| 2 |
1
|
fveq2i |
⊢ ( Ack ‘ 4 ) = ( Ack ‘ ( 3 + 1 ) ) |
| 3 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
| 4 |
2 3
|
fveq12i |
⊢ ( ( Ack ‘ 4 ) ‘ 1 ) = ( ( Ack ‘ ( 3 + 1 ) ) ‘ ( 0 + 1 ) ) |
| 5 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 6 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 7 |
|
ackvalsucsucval |
⊢ ( ( 3 ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → ( ( Ack ‘ ( 3 + 1 ) ) ‘ ( 0 + 1 ) ) = ( ( Ack ‘ 3 ) ‘ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 0 ) ) ) |
| 8 |
5 6 7
|
mp2an |
⊢ ( ( Ack ‘ ( 3 + 1 ) ) ‘ ( 0 + 1 ) ) = ( ( Ack ‘ 3 ) ‘ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 0 ) ) |
| 9 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
| 10 |
9
|
fveq2i |
⊢ ( Ack ‘ ( 3 + 1 ) ) = ( Ack ‘ 4 ) |
| 11 |
10
|
fveq1i |
⊢ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 0 ) = ( ( Ack ‘ 4 ) ‘ 0 ) |
| 12 |
|
ackval40 |
⊢ ( ( Ack ‘ 4 ) ‘ 0 ) = ; 1 3 |
| 13 |
11 12
|
eqtri |
⊢ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 0 ) = ; 1 3 |
| 14 |
13
|
fveq2i |
⊢ ( ( Ack ‘ 3 ) ‘ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 0 ) ) = ( ( Ack ‘ 3 ) ‘ ; 1 3 ) |
| 15 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 16 |
15 5
|
deccl |
⊢ ; 1 3 ∈ ℕ0 |
| 17 |
|
oveq1 |
⊢ ( 𝑛 = ; 1 3 → ( 𝑛 + 3 ) = ( ; 1 3 + 3 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑛 = ; 1 3 → ( 2 ↑ ( 𝑛 + 3 ) ) = ( 2 ↑ ( ; 1 3 + 3 ) ) ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝑛 = ; 1 3 → ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) = ( ( 2 ↑ ( ; 1 3 + 3 ) ) − 3 ) ) |
| 20 |
|
eqid |
⊢ ; 1 3 = ; 1 3 |
| 21 |
|
3p3e6 |
⊢ ( 3 + 3 ) = 6 |
| 22 |
15 5 5 20 21
|
decaddi |
⊢ ( ; 1 3 + 3 ) = ; 1 6 |
| 23 |
22
|
oveq2i |
⊢ ( 2 ↑ ( ; 1 3 + 3 ) ) = ( 2 ↑ ; 1 6 ) |
| 24 |
23
|
oveq1i |
⊢ ( ( 2 ↑ ( ; 1 3 + 3 ) ) − 3 ) = ( ( 2 ↑ ; 1 6 ) − 3 ) |
| 25 |
19 24
|
eqtrdi |
⊢ ( 𝑛 = ; 1 3 → ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) = ( ( 2 ↑ ; 1 6 ) − 3 ) ) |
| 26 |
|
ackval3 |
⊢ ( Ack ‘ 3 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) |
| 27 |
|
ovex |
⊢ ( ( 2 ↑ ; 1 6 ) − 3 ) ∈ V |
| 28 |
25 26 27
|
fvmpt |
⊢ ( ; 1 3 ∈ ℕ0 → ( ( Ack ‘ 3 ) ‘ ; 1 3 ) = ( ( 2 ↑ ; 1 6 ) − 3 ) ) |
| 29 |
16 28
|
ax-mp |
⊢ ( ( Ack ‘ 3 ) ‘ ; 1 3 ) = ( ( 2 ↑ ; 1 6 ) − 3 ) |
| 30 |
14 29
|
eqtri |
⊢ ( ( Ack ‘ 3 ) ‘ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 0 ) ) = ( ( 2 ↑ ; 1 6 ) − 3 ) |
| 31 |
8 30
|
eqtri |
⊢ ( ( Ack ‘ ( 3 + 1 ) ) ‘ ( 0 + 1 ) ) = ( ( 2 ↑ ; 1 6 ) − 3 ) |
| 32 |
4 31
|
eqtri |
⊢ ( ( Ack ‘ 4 ) ‘ 1 ) = ( ( 2 ↑ ; 1 6 ) − 3 ) |