Metamath Proof Explorer


Theorem ackval42

Description: The Ackermann function at (4,2). (Contributed by AV, 9-May-2024)

Ref Expression
Assertion ackval42 ( ( Ack ‘ 4 ) ‘ 2 ) = ( ( 2 ↑ 6 5 5 3 6 ) − 3 )

Proof

Step Hyp Ref Expression
1 df-4 4 = ( 3 + 1 )
2 1 fveq2i ( Ack ‘ 4 ) = ( Ack ‘ ( 3 + 1 ) )
3 df-2 2 = ( 1 + 1 )
4 2 3 fveq12i ( ( Ack ‘ 4 ) ‘ 2 ) = ( ( Ack ‘ ( 3 + 1 ) ) ‘ ( 1 + 1 ) )
5 3nn0 3 ∈ ℕ0
6 1nn0 1 ∈ ℕ0
7 ackvalsucsucval ( ( 3 ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → ( ( Ack ‘ ( 3 + 1 ) ) ‘ ( 1 + 1 ) ) = ( ( Ack ‘ 3 ) ‘ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 1 ) ) )
8 5 6 7 mp2an ( ( Ack ‘ ( 3 + 1 ) ) ‘ ( 1 + 1 ) ) = ( ( Ack ‘ 3 ) ‘ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 1 ) )
9 3p1e4 ( 3 + 1 ) = 4
10 9 fveq2i ( Ack ‘ ( 3 + 1 ) ) = ( Ack ‘ 4 )
11 10 fveq1i ( ( Ack ‘ ( 3 + 1 ) ) ‘ 1 ) = ( ( Ack ‘ 4 ) ‘ 1 )
12 ackval41a ( ( Ack ‘ 4 ) ‘ 1 ) = ( ( 2 ↑ 1 6 ) − 3 )
13 11 12 eqtri ( ( Ack ‘ ( 3 + 1 ) ) ‘ 1 ) = ( ( 2 ↑ 1 6 ) − 3 )
14 13 fveq2i ( ( Ack ‘ 3 ) ‘ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 1 ) ) = ( ( Ack ‘ 3 ) ‘ ( ( 2 ↑ 1 6 ) − 3 ) )
15 2cn 2 ∈ ℂ
16 6nn0 6 ∈ ℕ0
17 6 16 deccl 1 6 ∈ ℕ0
18 expcl ( ( 2 ∈ ℂ ∧ 1 6 ∈ ℕ0 ) → ( 2 ↑ 1 6 ) ∈ ℂ )
19 15 17 18 mp2an ( 2 ↑ 1 6 ) ∈ ℂ
20 3cn 3 ∈ ℂ
21 ackval3 ( Ack ‘ 3 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) )
22 oveq1 ( 𝑛 = ( ( 2 ↑ 1 6 ) − 3 ) → ( 𝑛 + 3 ) = ( ( ( 2 ↑ 1 6 ) − 3 ) + 3 ) )
23 npcan ( ( ( 2 ↑ 1 6 ) ∈ ℂ ∧ 3 ∈ ℂ ) → ( ( ( 2 ↑ 1 6 ) − 3 ) + 3 ) = ( 2 ↑ 1 6 ) )
24 22 23 sylan9eqr ( ( ( ( 2 ↑ 1 6 ) ∈ ℂ ∧ 3 ∈ ℂ ) ∧ 𝑛 = ( ( 2 ↑ 1 6 ) − 3 ) ) → ( 𝑛 + 3 ) = ( 2 ↑ 1 6 ) )
25 24 oveq2d ( ( ( ( 2 ↑ 1 6 ) ∈ ℂ ∧ 3 ∈ ℂ ) ∧ 𝑛 = ( ( 2 ↑ 1 6 ) − 3 ) ) → ( 2 ↑ ( 𝑛 + 3 ) ) = ( 2 ↑ ( 2 ↑ 1 6 ) ) )
26 25 oveq1d ( ( ( ( 2 ↑ 1 6 ) ∈ ℂ ∧ 3 ∈ ℂ ) ∧ 𝑛 = ( ( 2 ↑ 1 6 ) − 3 ) ) → ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) = ( ( 2 ↑ ( 2 ↑ 1 6 ) ) − 3 ) )
27 3re 3 ∈ ℝ
28 4re 4 ∈ ℝ
29 3lt4 3 < 4
30 27 28 29 ltleii 3 ≤ 4
31 sq2 ( 2 ↑ 2 ) = 4
32 30 31 breqtrri 3 ≤ ( 2 ↑ 2 )
33 2re 2 ∈ ℝ
34 1le2 1 ≤ 2
35 17 nn0zi 1 6 ∈ ℤ
36 1nn 1 ∈ ℕ
37 2nn0 2 ∈ ℕ0
38 9re 9 ∈ ℝ
39 2lt9 2 < 9
40 33 38 39 ltleii 2 ≤ 9
41 36 16 37 40 declei 2 ≤ 1 6
42 2z 2 ∈ ℤ
43 42 eluz1i ( 1 6 ∈ ( ℤ ‘ 2 ) ↔ ( 1 6 ∈ ℤ ∧ 2 ≤ 1 6 ) )
44 35 41 43 mpbir2an 1 6 ∈ ( ℤ ‘ 2 )
45 leexp2a ( ( 2 ∈ ℝ ∧ 1 ≤ 2 ∧ 1 6 ∈ ( ℤ ‘ 2 ) ) → ( 2 ↑ 2 ) ≤ ( 2 ↑ 1 6 ) )
46 33 34 44 45 mp3an ( 2 ↑ 2 ) ≤ ( 2 ↑ 1 6 )
47 4nn0 4 ∈ ℕ0
48 31 47 eqeltri ( 2 ↑ 2 ) ∈ ℕ0
49 48 nn0rei ( 2 ↑ 2 ) ∈ ℝ
50 37 17 nn0expcli ( 2 ↑ 1 6 ) ∈ ℕ0
51 50 nn0rei ( 2 ↑ 1 6 ) ∈ ℝ
52 27 49 51 letri ( ( 3 ≤ ( 2 ↑ 2 ) ∧ ( 2 ↑ 2 ) ≤ ( 2 ↑ 1 6 ) ) → 3 ≤ ( 2 ↑ 1 6 ) )
53 32 46 52 mp2an 3 ≤ ( 2 ↑ 1 6 )
54 nn0sub ( ( 3 ∈ ℕ0 ∧ ( 2 ↑ 1 6 ) ∈ ℕ0 ) → ( 3 ≤ ( 2 ↑ 1 6 ) ↔ ( ( 2 ↑ 1 6 ) − 3 ) ∈ ℕ0 ) )
55 5 50 54 mp2an ( 3 ≤ ( 2 ↑ 1 6 ) ↔ ( ( 2 ↑ 1 6 ) − 3 ) ∈ ℕ0 )
56 53 55 mpbi ( ( 2 ↑ 1 6 ) − 3 ) ∈ ℕ0
57 56 a1i ( ( ( 2 ↑ 1 6 ) ∈ ℂ ∧ 3 ∈ ℂ ) → ( ( 2 ↑ 1 6 ) − 3 ) ∈ ℕ0 )
58 ovexd ( ( ( 2 ↑ 1 6 ) ∈ ℂ ∧ 3 ∈ ℂ ) → ( ( 2 ↑ ( 2 ↑ 1 6 ) ) − 3 ) ∈ V )
59 21 26 57 58 fvmptd2 ( ( ( 2 ↑ 1 6 ) ∈ ℂ ∧ 3 ∈ ℂ ) → ( ( Ack ‘ 3 ) ‘ ( ( 2 ↑ 1 6 ) − 3 ) ) = ( ( 2 ↑ ( 2 ↑ 1 6 ) ) − 3 ) )
60 19 20 59 mp2an ( ( Ack ‘ 3 ) ‘ ( ( 2 ↑ 1 6 ) − 3 ) ) = ( ( 2 ↑ ( 2 ↑ 1 6 ) ) − 3 )
61 2exp16 ( 2 ↑ 1 6 ) = 6 5 5 3 6
62 61 oveq2i ( 2 ↑ ( 2 ↑ 1 6 ) ) = ( 2 ↑ 6 5 5 3 6 )
63 62 oveq1i ( ( 2 ↑ ( 2 ↑ 1 6 ) ) − 3 ) = ( ( 2 ↑ 6 5 5 3 6 ) − 3 )
64 14 60 63 3eqtri ( ( Ack ‘ 3 ) ‘ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 1 ) ) = ( ( 2 ↑ 6 5 5 3 6 ) − 3 )
65 4 8 64 3eqtri ( ( Ack ‘ 4 ) ‘ 2 ) = ( ( 2 ↑ 6 5 5 3 6 ) − 3 )