Step |
Hyp |
Ref |
Expression |
1 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
2 |
1
|
fveq2i |
⊢ ( Ack ‘ 4 ) = ( Ack ‘ ( 3 + 1 ) ) |
3 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
4 |
2 3
|
fveq12i |
⊢ ( ( Ack ‘ 4 ) ‘ 2 ) = ( ( Ack ‘ ( 3 + 1 ) ) ‘ ( 1 + 1 ) ) |
5 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
6 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
7 |
|
ackvalsucsucval |
⊢ ( ( 3 ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → ( ( Ack ‘ ( 3 + 1 ) ) ‘ ( 1 + 1 ) ) = ( ( Ack ‘ 3 ) ‘ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 1 ) ) ) |
8 |
5 6 7
|
mp2an |
⊢ ( ( Ack ‘ ( 3 + 1 ) ) ‘ ( 1 + 1 ) ) = ( ( Ack ‘ 3 ) ‘ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 1 ) ) |
9 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
10 |
9
|
fveq2i |
⊢ ( Ack ‘ ( 3 + 1 ) ) = ( Ack ‘ 4 ) |
11 |
10
|
fveq1i |
⊢ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 1 ) = ( ( Ack ‘ 4 ) ‘ 1 ) |
12 |
|
ackval41a |
⊢ ( ( Ack ‘ 4 ) ‘ 1 ) = ( ( 2 ↑ ; 1 6 ) − 3 ) |
13 |
11 12
|
eqtri |
⊢ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 1 ) = ( ( 2 ↑ ; 1 6 ) − 3 ) |
14 |
13
|
fveq2i |
⊢ ( ( Ack ‘ 3 ) ‘ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 1 ) ) = ( ( Ack ‘ 3 ) ‘ ( ( 2 ↑ ; 1 6 ) − 3 ) ) |
15 |
|
2cn |
⊢ 2 ∈ ℂ |
16 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
17 |
6 16
|
deccl |
⊢ ; 1 6 ∈ ℕ0 |
18 |
|
expcl |
⊢ ( ( 2 ∈ ℂ ∧ ; 1 6 ∈ ℕ0 ) → ( 2 ↑ ; 1 6 ) ∈ ℂ ) |
19 |
15 17 18
|
mp2an |
⊢ ( 2 ↑ ; 1 6 ) ∈ ℂ |
20 |
|
3cn |
⊢ 3 ∈ ℂ |
21 |
|
ackval3 |
⊢ ( Ack ‘ 3 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) |
22 |
|
oveq1 |
⊢ ( 𝑛 = ( ( 2 ↑ ; 1 6 ) − 3 ) → ( 𝑛 + 3 ) = ( ( ( 2 ↑ ; 1 6 ) − 3 ) + 3 ) ) |
23 |
|
npcan |
⊢ ( ( ( 2 ↑ ; 1 6 ) ∈ ℂ ∧ 3 ∈ ℂ ) → ( ( ( 2 ↑ ; 1 6 ) − 3 ) + 3 ) = ( 2 ↑ ; 1 6 ) ) |
24 |
22 23
|
sylan9eqr |
⊢ ( ( ( ( 2 ↑ ; 1 6 ) ∈ ℂ ∧ 3 ∈ ℂ ) ∧ 𝑛 = ( ( 2 ↑ ; 1 6 ) − 3 ) ) → ( 𝑛 + 3 ) = ( 2 ↑ ; 1 6 ) ) |
25 |
24
|
oveq2d |
⊢ ( ( ( ( 2 ↑ ; 1 6 ) ∈ ℂ ∧ 3 ∈ ℂ ) ∧ 𝑛 = ( ( 2 ↑ ; 1 6 ) − 3 ) ) → ( 2 ↑ ( 𝑛 + 3 ) ) = ( 2 ↑ ( 2 ↑ ; 1 6 ) ) ) |
26 |
25
|
oveq1d |
⊢ ( ( ( ( 2 ↑ ; 1 6 ) ∈ ℂ ∧ 3 ∈ ℂ ) ∧ 𝑛 = ( ( 2 ↑ ; 1 6 ) − 3 ) ) → ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) = ( ( 2 ↑ ( 2 ↑ ; 1 6 ) ) − 3 ) ) |
27 |
|
3re |
⊢ 3 ∈ ℝ |
28 |
|
4re |
⊢ 4 ∈ ℝ |
29 |
|
3lt4 |
⊢ 3 < 4 |
30 |
27 28 29
|
ltleii |
⊢ 3 ≤ 4 |
31 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
32 |
30 31
|
breqtrri |
⊢ 3 ≤ ( 2 ↑ 2 ) |
33 |
|
2re |
⊢ 2 ∈ ℝ |
34 |
|
1le2 |
⊢ 1 ≤ 2 |
35 |
17
|
nn0zi |
⊢ ; 1 6 ∈ ℤ |
36 |
|
1nn |
⊢ 1 ∈ ℕ |
37 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
38 |
|
9re |
⊢ 9 ∈ ℝ |
39 |
|
2lt9 |
⊢ 2 < 9 |
40 |
33 38 39
|
ltleii |
⊢ 2 ≤ 9 |
41 |
36 16 37 40
|
declei |
⊢ 2 ≤ ; 1 6 |
42 |
|
2z |
⊢ 2 ∈ ℤ |
43 |
42
|
eluz1i |
⊢ ( ; 1 6 ∈ ( ℤ≥ ‘ 2 ) ↔ ( ; 1 6 ∈ ℤ ∧ 2 ≤ ; 1 6 ) ) |
44 |
35 41 43
|
mpbir2an |
⊢ ; 1 6 ∈ ( ℤ≥ ‘ 2 ) |
45 |
|
leexp2a |
⊢ ( ( 2 ∈ ℝ ∧ 1 ≤ 2 ∧ ; 1 6 ∈ ( ℤ≥ ‘ 2 ) ) → ( 2 ↑ 2 ) ≤ ( 2 ↑ ; 1 6 ) ) |
46 |
33 34 44 45
|
mp3an |
⊢ ( 2 ↑ 2 ) ≤ ( 2 ↑ ; 1 6 ) |
47 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
48 |
31 47
|
eqeltri |
⊢ ( 2 ↑ 2 ) ∈ ℕ0 |
49 |
48
|
nn0rei |
⊢ ( 2 ↑ 2 ) ∈ ℝ |
50 |
37 17
|
nn0expcli |
⊢ ( 2 ↑ ; 1 6 ) ∈ ℕ0 |
51 |
50
|
nn0rei |
⊢ ( 2 ↑ ; 1 6 ) ∈ ℝ |
52 |
27 49 51
|
letri |
⊢ ( ( 3 ≤ ( 2 ↑ 2 ) ∧ ( 2 ↑ 2 ) ≤ ( 2 ↑ ; 1 6 ) ) → 3 ≤ ( 2 ↑ ; 1 6 ) ) |
53 |
32 46 52
|
mp2an |
⊢ 3 ≤ ( 2 ↑ ; 1 6 ) |
54 |
|
nn0sub |
⊢ ( ( 3 ∈ ℕ0 ∧ ( 2 ↑ ; 1 6 ) ∈ ℕ0 ) → ( 3 ≤ ( 2 ↑ ; 1 6 ) ↔ ( ( 2 ↑ ; 1 6 ) − 3 ) ∈ ℕ0 ) ) |
55 |
5 50 54
|
mp2an |
⊢ ( 3 ≤ ( 2 ↑ ; 1 6 ) ↔ ( ( 2 ↑ ; 1 6 ) − 3 ) ∈ ℕ0 ) |
56 |
53 55
|
mpbi |
⊢ ( ( 2 ↑ ; 1 6 ) − 3 ) ∈ ℕ0 |
57 |
56
|
a1i |
⊢ ( ( ( 2 ↑ ; 1 6 ) ∈ ℂ ∧ 3 ∈ ℂ ) → ( ( 2 ↑ ; 1 6 ) − 3 ) ∈ ℕ0 ) |
58 |
|
ovexd |
⊢ ( ( ( 2 ↑ ; 1 6 ) ∈ ℂ ∧ 3 ∈ ℂ ) → ( ( 2 ↑ ( 2 ↑ ; 1 6 ) ) − 3 ) ∈ V ) |
59 |
21 26 57 58
|
fvmptd2 |
⊢ ( ( ( 2 ↑ ; 1 6 ) ∈ ℂ ∧ 3 ∈ ℂ ) → ( ( Ack ‘ 3 ) ‘ ( ( 2 ↑ ; 1 6 ) − 3 ) ) = ( ( 2 ↑ ( 2 ↑ ; 1 6 ) ) − 3 ) ) |
60 |
19 20 59
|
mp2an |
⊢ ( ( Ack ‘ 3 ) ‘ ( ( 2 ↑ ; 1 6 ) − 3 ) ) = ( ( 2 ↑ ( 2 ↑ ; 1 6 ) ) − 3 ) |
61 |
|
2exp16 |
⊢ ( 2 ↑ ; 1 6 ) = ; ; ; ; 6 5 5 3 6 |
62 |
61
|
oveq2i |
⊢ ( 2 ↑ ( 2 ↑ ; 1 6 ) ) = ( 2 ↑ ; ; ; ; 6 5 5 3 6 ) |
63 |
62
|
oveq1i |
⊢ ( ( 2 ↑ ( 2 ↑ ; 1 6 ) ) − 3 ) = ( ( 2 ↑ ; ; ; ; 6 5 5 3 6 ) − 3 ) |
64 |
14 60 63
|
3eqtri |
⊢ ( ( Ack ‘ 3 ) ‘ ( ( Ack ‘ ( 3 + 1 ) ) ‘ 1 ) ) = ( ( 2 ↑ ; ; ; ; 6 5 5 3 6 ) − 3 ) |
65 |
4 8 64
|
3eqtri |
⊢ ( ( Ack ‘ 4 ) ‘ 2 ) = ( ( 2 ↑ ; ; ; ; 6 5 5 3 6 ) − 3 ) |