| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ackvalsuc1mpt | 
							⊢ ( 𝑀  ∈  ℕ0  →  ( Ack ‘ ( 𝑀  +  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( Ack ‘ ( 𝑀  +  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							fvoveq1 | 
							⊢ ( 𝑛  =  𝑁  →  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) )  =  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							fveq1d | 
							⊢ ( 𝑛  =  𝑁  →  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 )  =  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ‘ 1 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  𝑛  =  𝑁 )  →  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 )  =  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ‘ 1 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 7 | 
							
								
							 | 
							fvexd | 
							⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ‘ 1 )  ∈  V )  | 
						
						
							| 8 | 
							
								2 5 6 7
							 | 
							fvmptd | 
							⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( Ack ‘ ( 𝑀  +  1 ) ) ‘ 𝑁 )  =  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ‘ 1 ) )  |